欢迎访问散文集文学网!

高中数学说课稿万能

故事会 分享 时间: 加入收藏 我要投稿 点赞

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。大家想知道怎么样才能写一篇比较优质的范文吗?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧

高中数学说课稿万能篇一

1、地位、作用和特点:

《 》是高中数学课本第 册( 修)的第 章“ ”的第 节内容,高中数学课本说课稿。

本节是在学习了 之后编排的。通过本节课的学习,既可以对 的知识进一步巩固和深化,又可以为后面学习 打下基础,所以

是本章的重要内容。此外,《 》的知识与我们日常生活、生产、科学研究 有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是

特点之二是: 。

根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

(1)知识目标:a、b、c

(2)能力目标:a、b、c

(3)德育目标:a、b

教学的重点和难点:

(1)教学重点:

(2)教学难点:

基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:

导入新课 新课教学

反馈发展

学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的'教学中主要渗透以下几个方面的学法指导。

1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。

本节教师通过列举具体事例来进行分析,归纳出 ,并依

据此知识与具体事例结合、推导出 ,这正是一个分析和推理的全过程。

2、让学生亲自经历运用科学方法探索的过程。 主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授 时,可通过

演示,创设探索 规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。

3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。

4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。

(一)、课题引入:

教师创设问题情景(创设情景:a、教师演示实验。b、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例,教案《高中数学课本说课稿》。c、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。

(二)、新课教学:

1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。

2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。

(三)、实施反馈:

1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。

2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。

在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

以上是我对《 》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的 知识,并把它运用到对

的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。

总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。

高中数学说课稿万能篇二

1. 教材所处的地位和作用:

本节内容在全书和章节中的作用是:《 》是 中数学教材第 册第 章第 节内容。在此之前学生已学习了 基础,这为过渡到本节的学习起着铺垫作用。本节内容是在 中,占据 的地位。以及为其他学科和今后的学习打下基础。

2. 教育教学目标:

根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

(1)知识目标:

(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过 的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。

3. 重点,难点以及确定依据:

下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:

1. 教学手段:

如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点: 应着重采用 的教学方法。

2. 教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

3. 学情分析:(说学法)

(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散

(2) 知识障碍上:知识掌握上,学生原有的知识 ,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍, 知识 学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

(3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的'最有力的动力

最后我来具体谈谈这一堂课的教学过程:

4. 教学程序及设想:

(1)由 引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。

(2)由实例得出本课新的知识点

(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。

(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。

(7)板书

(8)布置作业。

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,

(一)课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分

高中数学集合教学反思

集合这章内容,教学参考书上安排的课时为五课时,我们的导学案也是安排五课时,实际教学时,由于对学生的实际情况估计不足,第一课时的导学案用了两课时才完成。集合这一章的特点是概念不多,但这章所涉及到的内容很广,学生学习本章内容时,不仅要理解本章的概念,还要理解与本章内容相关联的其他内容,这些内容有初中学习过的内容、有生活中的方方面面的相关知识,再加上高中学习方法与初中不同,逻辑思维能力要求较高,因此学生感觉学起来比较困难。针对这种情况,我在实际教学时,首先要求学生准确理解概念,如:集合的元素具有三个性质:确定性、互异性、无序性。集合的关系、运算等都是从元素的角度定义的,所以解集合问题时,教会学生对元素的性质进行分析,反复训练,让学生通过实例体会这三个性质。

第二,掌握相关的符号语言、venn图,正确使用列举法、描述法表示集合,特别要注意用描述法表示集合时,集合中的元素是什么,这是一个教学难点。第二个难点是集合的运算—交集和并集。突破难点充分运用数形结合思想,集合间的关系和运算,以数形结合思想为指导,借助图形思考,可以使各集合间的关系直观明了,使抽象的集合运算建立在直观的基础上,使解题思路清晰明朗,直观简捷,有利于问题的解决。

第三,指导学生理解并掌握自然语言、符号语言、图形语言这三种语言,灵活准确地进行语言转换,可以帮助学生提高分析问题,解决问题的能力。

第四,集合问题涉及到的其他内容,遇到了讲透,不拓展。

高中数学说课稿万能篇三

(1)至少掌握点到直线的距离公式的一种推导方法,能用公式来求点到直线距离。

(2)培养学生探究能力和由特殊到一般的研究问题的能力。

(3)认识事物(知识)之间相互联系、互相转化的辩证法思想,培养学生转化的思想和综合应用知识分析问题解决问题的能力。

(4)培养学生团队合作精神,培养学生个性品质,培养学生勇于探究的科学精神。

:点到直线的距离公式推导及公式的应用

:点到直线的距离公式的推导

:启发引导法、讨论法

:任务驱动下的研究性学习

:45分钟

1、教师提出问题,引发认知冲突(约5分钟)

问题:假定在直角坐标系上,已知一个定点p(x0,y0)和一条定直线l:axbyc=0,那么如何求点p到直线l的距离d?请学生思考并回答。

学生1:先过点p作直线l的垂线,垂足为q,则|pq|就是点p到直线l的距离d;然后用点斜式写出垂线方程,并与原直线方程联立方程组,此方程组的解就是点q的坐标;最后利用两点间距离公式求出|pq|。

接着,教师用投影出示下列5道题(尝试性题组),请5位学生上黑板练习(第(4)题请一位运算能力强的同学,其余学生在下面自己练习,每做完一题立即讲评):

(1)求p(1,2)到直线l:x=3的距离d;(答案:d=2)

(2)求p(x0,y0)到直线l:byc=0(b≠0)的距离d;(答案:)

(3)求p(x0,y0)到直线l:axc=0(a≠0)的距离d;(答案:)

(4)求p(6,7)到直线l:3x—4y5=0的距离d;(答案:d=1)

(5)求p(x0,y0)到直线l:axbyc=0(ab≠0)的距离d。

第(1)容易、(2)和(3)题虽然含有字母参数,但由于直线的位置比较特殊,学生不难得出正确结论;第(4)题虽然运算量较大,但按照刚才学生1回答的方法与步骤,也能顺利解出正确答案;第(5)题虽然思路清晰,但由于字母参数过多、运算量太大行不通。学生们陷入了困境。

2、教师启发引导,学生走出困境(约8分钟)

教师:根据以上5位学生的运算结果,你能得到什么启示?

学生2:当直线的位置比较特殊(水平或竖直)时,点到直线的距离容易求得,而当直线是倾斜位置时则较难;含有多个字母时虽然想起来思路很自然,但具体操作起来因计算量很大而无法得出结果。

教师:那么,练习(5)有没有运算量小一点的推导方法呢?我们能不能根据刚才的第(2)、(3)的启示,借助水平、竖直情形和平面几何知识来解决倾斜即一般情况呢?请同学们思考。

学生3:能!如图1,过点p作x、y轴的垂线分别交直线l于s、r,则由三角形面积公式可得

|pq|=(|pr|·|ps|)/|rs|

教师:|pr|怎么求?|ps|又怎么求?

学生3:设r(x1,y0),则由ax1by0c=0,

得x1=—(by0c)/a,

∴|pr|=|x0—x1|=|ax0by0c|/|a|;

同理:|ps|=|ax0by0c|/|b|。

教师:|rs|怎么求?

学生3:|rs|==(/|ab|)·|ax0by0c|。

教师:|pq|结果是什么?

学生3:|pq|=。

教师:公式的这种推导方法是否需要作补充说明?

学生4:当a=0或b=0时,δprs不存在,故应说明公式当a=0或b=0时是否适用?

由(2)、(3)检验可知公式依然成立,即公式对任意直线都适用。

3、教师提出问题,学生分组讨论(约10分钟)

教师:推导点到直线的距离公式的方法不少。前面我们学了函数、三角函数、向量、不等式等数学知识,你能用所学过的知识从不同角度、采用不同方法来推导这个公式吗?请同学们先独立思考,然后在小组上进行讨论交流,由组长负责记录。10分钟后每组推选一名代表对本组找到的最好的一种推导方法通过实物投影进行"成果"交流。

学生们积极探讨;教师来回巡视,回答各研究小组的询问......

4、学生交流"成果",教师点评小结(约16分钟)

经过约十分钟的研讨,各小组都找到了新的推导方法。于是教师请4名代表依次上讲台(让准备成熟的先讲),借助实物投影介绍本组的"成果"。由于时间关系,每组只要求讲一种方法,用时不超过4分钟,且各组的方法不能重复。

学生5:我们用的是"设而不求,整体代换"的数学思想。请看投影屏幕:

设q的坐标为(x1,y1),则直线pq的斜率k1=,又直线l的斜率k=—,于是由pq⊥l得,k1k=—1即b(x1—x0)—a(y1—y0)=0①

又因为ax1by1c=0,即ax1by1=—c

两边同减ax0by0得a(x1—x0)b(y1—y0)=—(ax0by0c)②

于是①2②2得,(a2b2)[(x1—x0)2(y1—y0)2]=(ax0by0c)2,

即(a2b2)d2=(ax0by0c)2

所以d=。

教师:"设而不求,整体代换",真是奥妙无穷,这是解析几何减少运算量的有效途径,同时也体现了数学的内在美,妙不可言。

学生6:我们小组向大家介绍一种独特的方法——向量法,请看投影屏幕:

如图2,设t(x1,y1)为直线l上的任意一点,则ax1by1c=0,=(x1—x0,y1—y0)

∵pq⊥直线l,

∴平行于直线l的法向量=(a,b)

另设与的夹角为θ,则·=cosθ

即|a(x1—x0)b(y1—y0)|=|||cosθ|

即|ax0by0c|=·d

∴d=。

教师:向量是数量与图形的有机结合,解析几何是用代数的方法解决几何问题,两者都体现了数形结合的思想,第三小组的推导方法证明了这一点,也再次说明了向量具有很强的实用性与工具性,用向量法解解析几何题确实行之有效。

学生7::我们小组向大家介绍向量的另一种方法,妙用向量数量积的性质.请看投影屏幕:

如图3,设垂足是点h(m,n),

直线l的法向量共线,

这是相当简单的方法了。

教师:巧妙利用向量数量积的性质来求距离,简直是"巧夺天工",与其他方法相比,这种方法有绝对优势,我们必须重视对向量工具性的研究和应用。

学生8:刚才三个小组的证明方法确实精彩,我们也发现了一种巧妙的方法,把它称为"柯西不等式法",请看投影屏幕:

我们知道,p点到直线l的距离,实质上是点p与直线l上任意一点t的距离的最小值,于是我们设t(x1,y1)为直线l上的任一点(如图2),则ax1by1c=0,

而d=|pt|min,于是|pt|=

=×,

利用柯西不等式,便有|pt|≥=,

所以d=,此时,即pt垂直于直线l。

教师:这一证法果然十分巧妙,包含的数学思想十分丰富。由点到直线的距想到最小值,又由最小值想到不等式,在一步步"转化"中问题得到圆满解决。同时也体现了不等式的工具作用。

5、公式应用(学生练习,约3分钟)

(1)求p(6,7)到直线l:3x—4y5=0的.距离d。

(直接代公式得答案:d=1,检验尝试性题组第(4)的答案)

(2)求p(—1,1)到直线l:的距离d。

(先化直线方程为一般式再代公式得答案:)

6、教师小结并布置作业(约1分钟)

这节课我们学习了点到直线的距离公式,在公式的推导中学到了许多重要的数学思想和方法,感受到了数学的奥妙,也感受到了成功的喜悦。其实这个公式的推导方法不下十种,由于课堂上时间紧,许多同学有创造性的推导方法不能进行展示、交流,请同学们撰写一篇题为《点到直线距离公式的多种推导方法》的数学小论文,作为本节课的作业,允许三到四人合作完成。

数学公式的教学应包含两个部分:公式的推导和公式的运用。由于受应试教育的影响,前者往往被"轻描淡写",而后者却搞得"轰轰烈烈",这显然与"重结论,但更重过程"的现代教育理念相违背。其实数学公式的推导都蕴含着丰富的数学思想和数学方法,谁忽视了这个"产生过程",谁就忽视了数学的"精髓",谁就忽视了学生探究性思维品质的培养。

这节课把研究性学习引入公式的教学,让学生真正成为课堂的主人。在推导公式的过程中,学生通过克服困难的经历,以及获得成功的体验,锻炼了意志,增强了信心。其实所有公式的教学、定理的教学都应向这个方向努力。

数学教学,从根本上讲就是提高学生的数学素质,提高学生的数学素质的有效途径有二:其一,使学生善于总结,使零乱的知识系统化、综合化;其二,使学生善于联想,培养发散性思维。本节课使学会从不同的角度思考问题,加强知识间的联系,正是锻练、提高学生运用知识分析问题和解决问题的能力,从而提高数学素质。

通过公式求点到直线的距离并不困难,但这个公式的推导方法不下十种,且各种推导都蕴含着重要的数学思想、方法,由于课堂上时间紧,许多同学的有创造性的推导方法不能进行展示、交流,故课外请同学们撰写一篇题为《点到直线距离公式的多种推导方法》的数学小论文作为本节课的作业。考虑到同学的个体差异,故允许三到四人合作完成。同时通过学生小论文的完成情况对这节课的教学效果作出评价。

本课设计有一定的弹性,实际教学中,学生想到的推导方法不一定是上述几种,我将针对每一种方法的特点进行适当的点评。进行交流的学生不一定是四人,若时间不够,公式应用留到下节课,本节课只完成公式推导。

高中数学说课稿万能篇四

知识与技能目标:准确理解椭圆的定义,掌握椭圆的标准方程及其推导。

过程与方法目标:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力。

情感、态度与价值观目标:通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美,通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。

重点是椭圆的定义及标准方程,难点是推导椭圆的标准方程。

教学环节

教学内容和形式

设计意图

复习

提问:

(1)圆的定义是什么?圆的标准方程的形式怎样?

(2)如何推导圆的标准方程呢?

激活学生已有的认知结构,为本课推导椭圆标准方程提供了方法与策略。

(略)

操作-----交流-----归纳-----多媒体演示-----联系生活

<1>固定一条细绳的两端,用笔尖将细绳拉紧并运动,在纸上你得到了怎样的图形?

在动手过程中,培养学生观察、辨析、归纳问题的能力。

在变化的过程中发现圆与椭圆的联系;建立起用联系与发展的'观点看问题;为下一节深入研究方程系数的几何意义埋下伏笔。

教学环节

注:1、平面内。

2、若,则点p的轨迹为椭圆。

若,则点p的轨迹为线段。

若,则点p的轨迹不存在。

情境1.生活中,你见过哪些类似椭圆的图形或物体?

情境2.让学生观察倾斜的圆柱形水杯的水面边界线,并从中抽象出数学模型.(教师用多媒体演示)

情境3.观看天体运行的轨道图片。

准确理解椭圆的定义。

渗透数学源于生活,圆锥曲线在生产和技术中有着广泛的应用。

例:已知点、为椭圆的两个焦点,p为椭圆上的任意一点,且,其中,求椭圆的方程

点拨-----板演-----点评

(1)建系设点

(2)写出点的集合

(3)写出代数方程

(4)化简方程:

<1>请一位基础较好,书写规范的同学板演。

(5)证明:讨论推导的等价性

掌握椭圆标准方程及推导方法。

培养学生战胜困难的意志品质并感受数学的简洁美、对称美。

养成学生扎实严谨的科学态度。

应用

举例

教学环节

例1.(1)椭圆的焦点坐标为:

(2)椭圆的焦距为4,则m的值为:

活动过程:思考-----解答-----点评

例2.已知椭圆焦点的坐标分别是(-4,0)、(4,0),椭圆上一点p到两焦点的距离的和等于10,求椭圆的标准方程

活动过程:思考-----解答-----点评

变式<1>已知椭圆焦点的坐标分别是(-4,0)(4,0),且经过点,求椭圆的标准方程。

求椭圆的标准方程

思考-----解答-----点评

认清椭圆两种标准方程形式上的特征。

提问:本节课学习的主要知识是什么?你学会了哪些数学思想与方法?

活动过程:教师提问-----学生小结-----师生补充完善。

让学生回顾本节所学知识与方法,以逐步提高学生自我获取知识的能力。

作业:教材第95页,练习2、4,第96页习题8-1,1、2、3、

探索:平面内到两个定点的距离差、积、商为定值的点的轨迹是否存在?若存在轨迹是什么?

分层次布置作业,帮助学生巩固所学知识;为学有余力的学生留有进一步探索、发展的空间。

8.1椭圆及其标准方程

本节课的设计力图贯彻"以人的发展为本"的教育理念,体现"教师为主导,学生为主体"的现代教学思想。在对椭圆定义的讲授中,遵循从生动直观到抽象概括的教学原则和教学途径,通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力;让椭圆生动灵活地呈现在学生面前,更有助于学生理解椭圆的内涵和外延。对本课另一难点标准方程推导的讲授中,在关键处设疑,以疑导思,让学生先从目的、再从方法上考虑,引导学生对比、分析,师生共同完成。通过经历椭圆方程的化简,增强了学生战胜困难的意志品质并体会数学的简洁美、对称美.通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学态度。设计的例题及变式练习,充分利用新知识解决问题,使所学内容得以巩固。变式(2)的设计让学生站在方程的角度认清椭圆两种标准方程形式上的特征,将学生的思维提升到了一个新的高度。课后分层次布置作业,帮助学生巩固所学知识;课后探索更为学有余力的学生留有进一步探索、发展的空间。在教学中借助多媒体生动、直观、形象的特点来突出教学重点。自始至终很好地调动学生的积极性,挖掘他们的内在潜能,提高学生的综合素质。

高中数学说课稿万能篇五

1. 地位及作用:

“椭圆及其标准方程”是高中《解析几何》第二章第七节内容,是本书的重点内容之一,也是历年高考、会考的必考内容,是在学完求曲线方程的基础上,进一步研究椭圆的特性,以完成对圆锥曲线的全面研究,为今后的学习打好基础,因此本节内容具有承前启后的作用。

2. 教学目标:

根据《教学大纲》,《考试说明》的要求,并根据教材的具体内容和学生的实际情况,确定本节课的教学目标:

(1)知识目标:掌握椭圆的定义和标准方程,以及它们的应用。

(2)能力目标:

(a)培养学生灵活应用知识的能力。

(b) 培养学生全面分析问题和解决问题的能力。

(c)培养学生快速准确的运算能力。

(3)德育目标:培养学生数形结合思想,类比、分类讨论的思想以及确立从感性到理性认识的辩证唯物主义观点。

3. 重点、难点和关键点:

因为椭圆的定义和标准方程是解决与椭圆有关问题的重要依据,也是研究双曲线和抛物线的基础,因此,它是本节教材的重点;由于学生推理归纳能力较低,在推导椭圆的标准方程时涉及到根式的两次平方,并且运算也较繁,因此它是本节课的难点;坐标系建立的好坏直接影响标准方程的推导和化简,因此建立一个适当的直角坐标系是本节的关键。

为了完成本节课的教学目标,突出重点、分散难点、根据教材的内容和学生的实际情况,对教材做以下的处理:

1.学生状况分析及对策:

2.教材内容的组织和安排:

本节教材的`处理上按照人们认识事物的规律,遵循由浅入深,循序渐进,层层深入的原则组织和安排如下:

(1)复习提问(2)引入新课(3)新课讲解(4)反馈练习(5)归纳总结(6)布置作业

1.为了充分调动学生学习的积极性,是学生变被动学习为主动而愉快的学习,引导学生自己动手,让学生的思维活动在教师的引导下层层展开。请学生参与课堂。加强方程推导的指导,是传授知识与培养能力有机的溶为一体,为此,本节课采用“引导教学法”。

2.利用电脑所画图形的动态演示总结规律。同时利用电脑的动态演示激发学生的学习兴趣。

教学环节

3.设a(-2,0),b(2,0),三角形abp周长为10,动点p轨迹方程。

例1属基础,主要反馈学生掌握基本知识的程度。

例2可强化基本技能训练和基本知识的灵活运用。

小结

为使学生对本节内容有一个完整深刻的认识,教师引导学生从以下几个方面进行小结。

1.椭圆的定义和标准方程及其应用。

2.椭圆标准方程中a,b,c诸关系。

3.求椭圆方程常用方法和基本思路。

通过小结形成知识体系,加深对本节知识的理解培养学生的归纳总结能力,增强学生学好圆锥曲线的信心。

布置作业

(1) 77页——78页 1,2,3,79页 11

(2) 预习下节内容

巩固本节所学概念,强化基本技能训练,培养学生良好的学习习惯和品质,发现和弥补教学中的遗漏和不足。

高中数学说课稿万能篇六

各位老师:

大家好!

我叫***,来自**。我说课的题目是《古典概型》,内容选自于高中教材新课程人教a版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

1.教材所处的地位和作用

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。

2.教学的重点和难点

重点:理解古典概型及其概率计算公式。

难点:古典概型的判断及把一些实际问题转化成古典概型。

1.知识与技能目标

(1)通过试验理解基本事件的概念和特点

(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。

2、过程与方法:

经历公式的推导过程,体验由特殊到一般的数学思想方法。

3、情感态度与价值观:

(1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

(2)让学生掌握"理论来源于实践,并把理论应用于实践"的辨证思想。

1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。

㈠创设情景、引入新课

在课前,教师布置任务,以小组为单位,完成下面两个模拟试验:

试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总;

试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。

在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出两个问题。

1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?

不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。

2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?]

「设计意图」通过课前的模拟实验,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。

㈡思考交流、形成概念

学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深对新概念的理解。

[基本事件有如下的两个特点:

(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和.]

「设计意图」让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。

例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?

先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。

「设计意图」将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点

观察对比,发现两个模拟试验和例1的共同特点:

让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。

[经概括总结后得到:

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等。(等可能性)

我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

「设计意图」培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过列出相同和不同点,能让学生很好的理解古典概型。

㈢观察分析、推导方程

问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?

教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系,最后概括总结得出古典概型计算任何事件的概率计算公式:

「设计意图」鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。

提问:

(1)在例1的实验中,出现字母"d"的概率是多少?

(2)在使用古典概型的概率公式时,应该注意什么?

「设计意图」教师提问,学生回答,深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

㈣例题分析、推广应用

例2单选题是标准化考试中常用的题型,一般是从a,b,c,d四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的.概率是多少?

学生先思考再回答,教师对学生没有注意到的关键点加以说明。

「设计意图」让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件a包含的基本事件的个数和试验中基本事件的总数。巩固学生对已学知识的掌握。

例3同时掷两个骰子,计算:

(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。引导学生用列表来列举试验中的基本事件的总数。

「设计意图」利用列表数形结合和分类讨论,既能形象直观地列出基本事件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

㈤探究思想、巩固深化

问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?

要求学生观察对比两种结果,找出问题产生的原因。

「设计意图」通过观察对比,发现两种结果不同的根本原因是--研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。

㈥总结概括、加深理解

1.基本事件的特点

2.古典概型的特点

3.古典概型的概率计算公式

学生小结归纳,不足的地方老师补充说明。

「设计意图」使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。

㈦布置作业

课本练习1、2、3

「设计意图」进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。

高中数学说课稿万能篇七

今天我说课的题目是《函数的单调性》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、教学过程五方面逐一加以分析和说明。

1、教材的地位和作用

本节内容选自北师大版高中数学必修1,第二章第3节。函数是高中数学的课程,它是描述事物运动变化的模型,而函数的单调性是函数的一大特征,它为我们之后的学习奠定重要基础。

2、学情分析

本节课的学生是高一学生,他们在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用倒数研究单调性的相关知识奠定了基础。

基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:

1.知识与技能(1)理解函数的单调性和单调函数的意义;

(2)会判断和证明简单函数的单调性。

2.过程与方法

(1)培养从概念出发,进一步研究性质的意识及能力;

(2)体会数形结合、分类讨论的数学思想。

3.情感态度与价值观

由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣。

通过以上对教材和学生的分析以及教学目标,我将本节课的重难点

重点:

函数单调性的概念,判断和证明简单函数的单调性。

难点:

1.函数单调性概念的认知

(1)自然语言到符号语言的转化;

(2)常量到变量的转化。

2.应用定义证明单调性的代数推理论证。

1、教法分析

基于以上对教材、学情的分析以及新课标的教学理念,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。

2、学法分析

新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法理解函数的单调性及特征。

为了更好的实现本课的三维目标,并突破重难点,我设计以下五个环节来进行我的教学。

(一)知识导入

温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x、y=-x、y=|x|,让学生作出这些函数的图像,然后让学生讨论这些函数图像是上升的还是下降的,由此引入到我的新课。在这个过程中不仅可以检查学生掌握基本初等函数图像的情况,而且符合学生的认知结构,通过学生自主探究,从知识产生、发展的过程中构建新概念,有利于激发学生的思维和学习的积极主动性。

(二)讲授新课

1.问题:分别做出函数y=x2,y=x+2的图像,指出上面的函数图象在哪个区间是上升的,在哪个区间是下降的?

通过学生熟悉的图像,及时引导学生观察,函数图像上a点的运动情况,引导学生能用自然语言描述出,随着x增大时图像变化规律。让学生大胆的去说,老师逐步修正、完善学生的`说法,最后给出正确答案。

2.观察函数y=x2随自变量x变化的情况,设置启发式问题:

(1)在y轴的右侧部分图象具有什么特点?

(2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1

(3)如何用数学符号语言来描述这个规律?

教师补充:这时我们就说函数y=x2在(0,+∞)上是增函数。

(4)反过来,如果y=f(x)在(0,+∞)上是增函数,我们能不能得到自变量与函数值的变化规律呢?

类似地分析图象在y轴的左侧部分。

通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当x1

仿照单调增函数定义,由学生说出单调减函数的定义。

教师总结归纳单调性和单调区间的定义。注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。

(我将给出函数y=x2,并画出这个函数的图像,让学生观察函数图像的特点,让他们描述函数图像的增减性,慢慢得到函数单调性的概念。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解)

(三)巩固练习

1练习1:说出函数f(x)=的单调区间,并指明在该区间上的单调性。x

练习2:练习2:判断下列说法是否正确

①定义在r上的函数f(x)满足f(2)>f(1),则函数是r上的增函数。

②定义在r上的函数f(x)满足f(2)>f(1),则函数是r上不是减函数。

1③已知函数y=,因为f(-1)

1我将给出一些具体的函数,如y=,f(x)=3x+2让学生说出函数的单调区间,并指明在该区间x

上的单调性。通过这种练习的方式,帮助学生巩固对知识的掌握。

(四)归纳总结

我先让学生进行小结,函数单调性定义,判断函数单调性的方法(图像、定义),然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,为下一节课的教学过程做好准备。

(五)布置作业

必做题:习题2-3a组第2,4,5题。

选做题:习题2-3b组第2题。

新课程理念告诉我们,不同的人在数学上可以获得不同的发展,因此要设计不同程度要求的习题。

高中数学说课稿万能篇八

今天我说课的题目是《二次函数的图像》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。

教材的地位和作用

本节内容选自北师大版高中数学必修1,第二章第4.1节。二次函数的图像在教材中起着承上启下的作用。

学情分析

本节课的学生是高一学生,他们在初中的时候已经学习过有关内容,为本节课的学习打下了基础,另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:

1.知识与技能

理解二次函数中参数a,b,c,h,k对其图像的影响;

2.过程与方法

通过体验对二次函数图像平移的研究方法,能迁移到其他函数图像的研究。

3.情感态度与价值观

通过本节的学习,进一步体会数形结合思想的作用,感受到数学中数与形的辩证统一。

通过以上对教材和学生的分析以及教学目标,我将本节课的重难点确定如下

重点:

二次函数图像的平移变换规律及应用。

难点:

探索平移对函数解析式的影响及如何利用平移变换规律求函数解析式,并能把平移变换规律迁移到其他函数。

1、教法分析

基于以上对教材、学情的分析以及新课改的要求,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。

2、学法分析

新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法进行学习。

为了更好的实现本课的三维目标,并突破重难点,我将设计以下五个环节来进行我的教学。

(1)知识导入

温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x2、y=2x2,让学生作出这些函数的图像,然后让学生比较这些函数图像的相同点和不同点,由此引入我的新课。一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验。

(2)讲授新课

例1:画出函数y=2x2,y=2(x+1)2,y=2(x+1)2+3的图像

让学生画出他们的图像并观察函数图像的`特点,再让学生与多媒体课件展示的图像进行对比,得出结论:若二次函数的解析式为y=ax2+bx+c,先将其化成y=a(x+h)2+k的形式,从而判断出y=ax2+bx+c是如何由y=ax2变换得到的。

前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左移,h负右移;k正上移,k负下移。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解,

(3)巩固练习

我将组织学生进行练习,完成课本44页1-3题。通过这种练习的方式,帮助学生巩固和加深二次函数中参数对图像的影响。

(4)归纳总结

我先让学生进行小结,然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,可以进行适当反思,为下一节课的教学过程做好准备。

(5)布置作业

高中数学说课稿万能篇九

开始:各位专家领导, 好!

今天我将要为大家讲的课题是

首先,我对本节教材进行一些分析

本节内容在全书及章节的地位:《 》是高中数学新教材第 册( )第 章第 节。在此之前,学生已学习了

,这为过渡到本节的学习起着铺垫作用。本节内容是 部分,因此,在 中,占据 的地位。

数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生:

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

1 基础知识目标:

2 能力训练目标:

3 创新素质目标:

4 个性品质目标:

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

重点: 通过 突出重点

难点: 通过 突破难点

关键:

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生

“知其然”而且要使学生“知其所以然”,

我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:

,应着重采用 的教学方法。即:

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

1、理论:

2、实践:

3、能力:

最后我来具体谈一谈这一堂课的教学过程:

1、由 引入:

把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。

在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

对于本题:

2、由实例得出本课新的知识点是:

3、讲解例题。

我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:

4、能力训练。

课后练习

使学生能巩固羡慕自觉运用所学知识与解题思想方法。

5、总结结论,强化认识。

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的`素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

6、变式延伸,进行重构。

重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

7、板书。

8、布置作业。

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。

结束:说课是教师面对同行和其它听众口头讲述具体课题的教学设想及其根据的新的教学研究形式。以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。说课对我们大家仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。

注意时间掌握

电脑课件

使用投影

根据时间进行增删

高中数学说课稿万能篇十

我担任高职单招辅导班的数学科教学,可以说每节课都是复习课。今天,我说的是复习课这种课型。内容是《函数》这一章中的“反函数”这一节。

反函数这一节在《函数》这章中是一个难点,篇幅不多(课时少),在高考考纲中的要求也比较简单。但我个人这样认为,复习课应尽量把与本节内容相关的新旧知识系统地串在一起,所以在备课时要找一条能把知识点连在一起的线索。这线索就是函数的三要素:

(一)教学目标:

①使学生掌握反函数的概念并能求出简单函数的反函数(考纲要求)。

②互为反函数的两个函数具有的性质,以及这些性质在解题中的运用。

③通过知识的系统性,培养学生的逆向思维能力和逻辑思维能力。

(二)重点、难点:

①重点:使学生能求出简单函数的反函数。

②难点:反函数概念的理解。

整节课采用传统的讲解法。

首先要认识反函数应先有函数的概念这知识,用例子来说明反函数的求法以及让学生来完成一题没有反函数的函数,从而得出一个不满足函数定义的关系式,通过分析来得到一个函数具有反函数的条件。这里是用“欲擒故纵”的手法,加深对概念的理解,也是突破难点的关键。

学生认识了反函数的求法(步骤),在老师的引导下得出三个结论,并运用这些结论来解题。希望能达到提高学生性质的解题能力和思维能力的.目标。

(一)温故:函数的概念、三要素

(二)新课:例1:求y=2x+1的反函数

解:

即(x∈r)

注意步骤,新关系式满足从r到r是一个函数关系式。

互这反函数的特点:

①运算互逆;②顺序倒置

例2:y=x2(x∈r)用y的代数表示x

得x=这x不是y的函数,不满足函数定义

若对,y=x2的定义域改为x≥0

可得x=,即y=(x≥0)

当逆对应满足函数定义,原函数才存在反函数。

得到结论①互为反函数的定义域、值域交换

分别在同一坐标上画出以上互为反函数的图象

得到结论②图象关于y=x对称

③单调性一致

(三)练习

1、求的反函数,并求出反函数的值域。

2、函数的图象关于对称,求a的值。

讲评:略。

(四)小结:

(五)布置作业:

高中数学说课稿万能篇十一

各位老师:

今天我说课的题目是《条件语句》,内容选自于新课程人教a版必修3第一章第二节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:

1.教材所处的地位和作用

在此之前,学生已学习了算法的概念、程序框图与算法的基本逻辑结构、输入语句、输出语句和赋值语句,这为过渡到本节的学习起着铺垫作用。这一节课主要的内容为条件语句表示方法、结构以及用法。条件语句与程序图中的条件结构相对应,它是五种基本算法语句中的一种,。通过本节课的学习,学生将更加了解算法语句,并能用更全面的眼光看待前面学过的语句,并为以后的学习作好必要的准备。本节课对学生算法语言能力、有条理的思考与清晰地表达的能力,逻辑思维能力的综合提升具有重要作用。

2.教学的重点和难点

重点:条件语句的表示方法、结构和用法;用条件语句表示算法。

难点:理解条件语句的'表示方法、结构和用法。

1.知识与技能目标:

⑴正确理解条件语句的概念,并掌握其结构。

⑵会应用条件语句编写程序。

2.过程与方法目标:

⑴通过实例,发展对解决具体问题的过程与步骤进行分析的能力。

⑵通过模仿,操作、探索、经历设计算法、设计框图、编写程序以解决具体问题的过程,发展应用算法的能力。

⑶在解决具体问题的过程中学习条件语句,感受算法的重要意义。

3.情感,态度和价值观目标

⑴能通过具体实例,感受和体会算法思想在解决具体问题中的意义,进一步体会算法思想的重要性,体验算法的有效性,增进对数学的了解,形成良好的数学学习情感,增强学习数学的乐趣。

⑵通过感受和认识现代信息技术在解决数学问题中的重要作用和威力,形成自觉地将数学理论和现代信息技术结合的思想。

⑶在编写程序解决问题的过程中,逐步养成扎实严谨的科学态度。

1.教学方法:根据本节内容逻辑性强,学生不易理解的特点,本节教学采用启发式教学,辅以观察法、发现法、练习法、讲解法。采用这种方法的原因是学生的逻辑能力不是很强,只能通过对实例的认真领会及一定的练习才能掌握本节知识。

2.教学手段:运用计算机、图形计算器辅助教学

1.创设情境(约4分钟)

首先,我要求学生们编写程序,输入一元二次方程

的系数,输出它的实数根。这样可以把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,因为要解决这一问题,根据我们之前所学的三种算法语句是无法解决的,这样就引出今天我们所要学习的内容。

2.探究新知(约8分钟)

为了引入概念,我首先给出了一个基本的应用条件语句能够解决的例题:

例1 编写一个程序,求实数x的绝对值。

整个过程由师生共同分析完成。老师要引导学生分析、研究例题中的两个程序,既要让学生们看到已知的三种语句,更要注意到未知的语句,即条件语句。总结上述例题的程序可得出条件语句的两种一般格式,接下来由师生共同对这两种格式进行研究。

3.知识应用(约15分钟)

此环节有两个例题

例2 编写程序,写出输入两个数a和b,将较大的数打印出来

例3 编写程序,使任意输入的3个整数按从大到小的顺序输出。

先把解决问题的思路用程序框图表示出来,然后再根据程序框图给出的算法步骤,逐步把算法用对应的程序语句表达出来。(程序框图先由学生讨论,再统一,然后利用图形计算器演示,学生会惊喜的发现:自己也是个编程高手了!这样可以激发学生们的学习兴趣)

4.练习巩固(约4分钟)

课本第30页第3题

练习可巩固学生对知识的理解,也可在练习中发现问题,使问题得到及时的解决。

5.课堂小结(约5分钟)

条件语句的步骤、结构及功能.

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用

6.布置作业

课本练习第3、4题

[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,分必做和选做,利于拓展学生的自主发展的空间。

7.板书设计

1.2.2条件语句

1、条件语句的一般格式

(1)if-then-else语句

格式: 框图:

(2)if-then语句

格式: 框图:

高中数学说课稿万能篇十二

1.《指数函数》在教材中的地位、作用和特点

《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节内容,是在学习了《指数》一节内容之后编排的。通过本节课的学习,既可以对指数和函数的概念等知识进一步巩固和深化,又可以为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅是本章《函数》的重点内容,也是高中学段的主要研究内容之一,有着不可替代的重要作用。

此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这部分知识还有着广泛的现实意义。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

2.教学目标、重点和难点

通过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:

知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。

鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:

(1)知识目标:

①掌握指数函数的概念;

②掌握指数函数的图象和性质;

③能初步利用指数函数的概念解决实际问题;

(2)技能目标:

①渗透数形结合的基本数学思想方法

②培养学生观察、联想、类比、猜测、归纳的能力;

(3)情感目标:

①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力

③领会数学科学的应用价值。

(4)教学重点:指数函数的图象和性质。

(5)教学难点:指数函数的图象性质与底数a的关系。

突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图通过这一节课的教学达到不仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而达到培养学生学习能力的目的,我根据自己对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:

1.创设问题情景.按照指数函数的在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

2.强化“指数函数”概念.引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

3.突出图象的作用.在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家曾经说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,因此图象发挥了主要的作用。

4.注意数学与生活和实践的'联系.数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。

本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情况,我主要在以下几个方面做了尝试:

1.再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。

2.领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。

3.在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。

4.注意学习过程的循序渐进。在概念、图象、性质、应用、拓展的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。

在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。

1.创设情景、导入新课

教师活动:

①用电脑展示两个实例,第一个是计算机价格下降问题,第二个是生物中细胞分裂的例子,

②将学生按奇数列、偶数列分组。

学生活动:

①分别写出计算机价格y与经过月份x的关系式和细胞个数y与分裂次数x的关系式,并互相交流;

②回忆指数的概念;

③归纳指数函数的概念;

④分析出对指数函数底数讨论的必要性以及分类的方法。

设计意图:通过生活实例激发学生的学习动机,,扫清由概念不清而造成的知识障碍,培养学生思维的主动性, 为突破难点做好准备;

2.启发诱导、探求新知

教师活动:

①给出两个简单的指数函数并要求学生画它们的图象②在准备好的小黑板上规范地画出这两个指数函数的图象③板书指数函数的性质。

学生活动:

①画出两个简单的指数函数图象

②交流、讨论

③归纳出研究函数性质涉及的方面

④总结出指数函数的性质。

设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”用多媒体将指数函数的图象推广到一般情况,学生就会很自然的通过观察图象总结出指数函数的性质,同时对于底数的讨论也就变得顺理成章。

3.巩固新知、反馈回授

教师活动:

①板书例1

②板书例2第一问

③介绍有关考古的拓展知识。

高中数学说课稿万能篇十三

本节知识是必修五第一章《解三角形》的第一节资料,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,并且解三角形和三角函数联系在高考当中也时常考一些解答题。所以,正弦定理和余弦定理的知识十分重要。

根据上述教材资料分析,研究到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:

认知目标:在创设的问题情境中,引导学生发现正弦定理的资料,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。

本事目标:引导学生经过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维本事,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。

情感目标:面向全体学生,创造平等的教学氛围,经过学生之间、师生之间的交流、合作和评价,调动学生的主动性和进取性,给学生成功的体验,激发学生学习的兴趣。

教学重点:正弦定理的资料,正弦定理的证明及基本应用。

教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时确定解的个数。

根据教材的资料和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究资料,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,进取探索,以及及时地鼓励,使他们知难而进。另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。突破难点的方法:抓住学生的本事线联系方法与技能使学生较易证明正弦定理,另外经过例题和练习来突破难点

指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、团体等多种解难释疑的尝试活动,将自我所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维本事,构成了实事求是的科学态度,增强了锲而不舍的求学精神。

第一:创设情景,大概用2分钟

第二:实践探究,构成概念,大约用25分钟

第三:应用概念,拓展反思,大约用13分钟

(一)创设情境,布疑激趣

“兴趣是最好的教师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的'模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab长为1m,想修好这个零件,但他不明白ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮忙别人的热情和学习的兴趣,从而进入今日的学习课题。

(二)探寻特例,提出猜想

1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

3.让学生总结实验结果,得出猜想:

在三角形中,角与所对的边满足关系

这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

(三)逻辑推理,证明猜想

1.强调将猜想转化为定理,需要严格的理论证明。

2.鼓励学生经过作高转化为熟悉的直角三角形进行证明。

3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明

(四)归纳总结,简单应用

1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

2.正弦定理的资料,讨论能够解决哪几类有关三角形的问题。

3.运用正弦定理求解本节课引入的三角形零件边长的问题。自我参与实际问题的解决,能激发学生知识后用于实际的价值观。

(五)讲解例题,巩固定理

1.例1。在△abc中,已知a=32°,b=81.8°,a=42.9cm.解三角形.

例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

2.例2.在△abc中,已知a=20cm,b=28cm,a=40°,解三角形.

例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

(六)课堂练习,提高巩固

1.在△abc中,已知下列条件,解三角形.

(1)a=45°,c=30°,c=10cm

(2)a=60°,b=45°,c=20cm

2.在△abc中,已知下列条件,解三角形.

(1)a=20cm,b=11cm,b=30°

(2)c=54cm,b=39cm,c=115°

学生板演,教师巡视,及时发现问题,并解答。

(七)小结反思,提高认识

经过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

1.用向量证明了正弦定理,体现了数形结合的数学思想。

2.它表述了三角形的边与对角的正弦值的关系。

3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

(从实际问题出发,经过猜想、实验、归纳等思维方法,最终得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅仅收获着结论,并且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生进取性,使数学教学成为数学活动的教学。)

(八)任务后延,自主探究

如果已知一个三角形的两边及其夹角,要求第三边,怎样办?发现正弦定理不适用了,那么自然过渡到下一节资料,余弦定理。布置作业,预习下一节资料。

高中数学说课稿万能篇十四

1、教材地位和作用

二面角及其平面角的概念是立体几何最重要的概念之一。二面角的概念发展、完善了空间角的概念;而二面角的平面角不但定量描述了两相交平面的相对位置,同时它也是空间中线线、线面、面面垂直关系的一个汇集点。搞好本节课的学习,对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。教学大纲明确要求要让学生掌握二面角及其平面角的概念和运用。

2、教学目标

根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标:

认知目标:

(1)使学生正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

(2)进一步培养学生把空间问题转化为平面问题的化归思想。

能力目标:以培养学生的创新能力和动手能力为重点。

(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。

(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

教育目标:

(1)使学生认识到数学知识来自实践,并服务于实践,从而增强学生应用数学的意识。

(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

3、本节课教学的重、难点是两个过程的教学:

(1)二面角的平面角概念的形成过程。

(2)寻找二面角的平面角的方法的发现过程。

其理由如下:

(1)现行教材省略了概念的形成过程和方法的发现过程,没有反映出科学认识产生的辩证过程,与学生的认知规律相悖,给学生的学习造成了很大的困难,非常不利于学生创新能力、独立思考能力以及动手能力的培养。

(2)现代认知学认为,揭示知识的形成过程,对学生学习新知识是十分必要的。同时通过展现知识的发生、发展过程,给学生思考、探索、发现和创新提供了最大的空间,可以使学生在整个教学过程中始终处于积极的`思维状态,进而培养他们独立思考和大胆求索的精神,这样才能全面落实本节课的教学目标。

在设计本教学时,主要贯彻了以下两个思想:

1、树立以学生发展为本的思想。通过构建以学习者为中心、有利于学生主体精神、创新能力健康发展的宽松的教学环境,提供学生自主探索和动手操作的机会,鼓励他们创新思考,亲身参与概念和方法的形成过程。2、坚持协同创新原则。把教材创新、教法创新以及学法创新有机地统一起来,因为只有教师创新地教,学生创新地学,才能营建一个有利于创新能力培养的良好环境。

首先是教材创新。

(1)在二面角的平面角概念引入上,我变课本上的“直接给出定义”为“类比——猜想——操作——定义”,也就是变封闭的、逻辑演绎体系为开放的、探索性的发现过程。

(2)在引入定义之后,例题讲解之前,引导学生发现寻找二面角的平面角的方法,为例题做好铺垫。

(3)重新编排例题。

其次是教法创新。采用多种创新的教学方法,包括问题解决法、类比发现法、研究发现法等教学方法。

这组教学方法的特点是教师通过创设问题情境,引导学生逐步发现知识的形成过程,使教学活动真正建立在学生自主活动和探索的基础上,着力培养学生的创新能力。

这组教学方法使得学生在解决问题的过程中学数学,用数学,不仅强调动脑思考,而且强调动手操作,亲身体验,注重多感官参与、多种心理能力的投入,通过学生全面、多样的主体实践活动,促进他们独立思考能力、动手能力等多方面素质的整体发展。

教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用《几何画板》制作课件来辅助教学;此外,为加强直观教学,教师可预先做好一些模型。

最后是学法创新。意在指导学生会创新地学。

1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。

2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。

3、会学:通过自已亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新。

(一)、二面角

1、揭示概念产生背景。

心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。

问题情境1、我们是如何定量研究两平行平面的相对位置的?

问题情境2、立几中常用距离和角来定量描述两个元素之间的相对位置,为什么不引入两平行平面所成的角?

问题情境3、我们应如何定量研究两个相交平面之间的相对位置呢?

通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为研究两相交平面的相对位置的需要,从而明确新课题研究的必要性,触发学生积极思维活动的展开。

2、展现概念形成过程。

高中数学说课稿万能篇十五

(1)说教材的内容和地位

本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。

(2)说教学目标

根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:

1.知识与技能:掌握集合的基本概念及表示方法。了解"属于"关系的意义,掌握集合元素的特征。

2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯。并通过"自主、合作与探究"实现"一切以学生为中心"的理念。

3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的兴趣,由集合的学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。

(3)说教学重点和难点

依据课程标准和学生实际,我确定本课的教学重点为

教学重点:集合的基本概念及元素特征。

教学难点:掌握集合元素的三个特征,体会元素与集合的属于关系。

接下来则是说教法、学法

教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用"生活实例与数学实例"相结合,"师生互动与课堂布白"相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,()不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。

总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的课堂氛围。

接着我来说一下最重要的部分,本节课的教学过程:

这节课的流程主要分为六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。上述六个环节由浅入深,层层递进。 多层次、多角度地加深对概念的理解。 提高学生学习的兴趣,以达到良好的教学效果。

第一环节:创设问题情境,引入目标

课堂开始我将提出两个问题:

问题1:班级有20名男生,16名女生,问班级一共多少人?

问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?

这里我会让学生以小组讨论的形式进行讨论问题,事实上小组合作的形式是本节课主要形式。

待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。

安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。

很自然地进入到第二环节:自主探究

让学生阅读教材,并思考下列问题:

(1)有那些概念?

(2)有那些符号?

(3)集合中元素的特性是什么?

安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。

让学生自主探究之后将进入第三环节:讨论辨析

小组合作探究(1)

让学生观察下列实例

(1)1~20以内的所有质数;

(2)所有的正方形;

(3)到直线 的距离等于定长 的所有的点;

(4)方程 的所有实数根;

通过以上实例,辨析概念:

(1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而集合中的每个对象叫做这个集合的元素。

(2)表示方法:集合通常用大括号{ }或大写的拉丁字母a,b,c…表示,而元素用小写的拉丁字母a,b,c…表示。

小组合作探究(2)——集合元素的特征

问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?

问题4:某单位所有的"帅哥"能否构成一个集合?由此说明什么?

集合中的元素必须是确定的

问题5:在一个给定的集合中能否有相同的元素?由此说明什么?

集合中的元素是不重复出现的

问题6:咱班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么? 集合中的元素是没有顺序的`

我如此设计的意图是因为:问题是数学的心脏,感受问题是学习数学的根本动力。

小组合作探究(3)——元素与集合的关系

问题7:设集合a表示"1~20以内的所有质数",那么3,4,5,6这四个元素哪些在集合a中?哪些不在集合a中?

问题8:如果元素a是集合a中的元素,我们如何用数学化的语言表达?

a属于集合a,记作a∈a

问题9:如果元素a不是集合a中的元素,我们如何用数学化的语言表达?

a不属于集合a,记作aa

小组合作探究(4)——常用数集及其表示方法

问题10:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示?

自然数集(非负整数集):记作 n

正整数集:

整数集:记作 z

有理数集:记作 q 实数集:记作 r

设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。

第四环节:理论迁移 变式训练

1.下列指定的对象,能构成一个集合的是

① 很小的数

② 不超过30的非负实数

③ 直角坐标平面内横坐标与纵坐标相等的点

④ π的近似值

⑤ 所有无理数

a、②③④⑤ b、①②③⑤ c、②③⑤ d、②③④

第五环节:课堂小结,自我评价

1.这节课学习的主要内容是什么?

2.这节课主要解释了什么数学思想?

设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统。教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。

第六环节:作业布置,反馈矫正

1.必做题 课本习题1.1—1、2、3.

2.选做题 已知集合a={a+2,(a+1)2,a2+3a+3},且1∈a,求实数a 的值。

设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。

好的板书就像一份微型教案,为了让学生直观易懂的看笔记,板书应设计得有条理性、概括性、指导性,所以我设计的板书如下:

集 合

1.集合的概念

2.集合元素的特征

(学生板演)

3.常见集合的表示

4.范例研究

高中数学说课稿万能篇十六

我今天说课的课题是新课标高中数学人教版a版必修第二册第三章“3.1.1倾斜角与斜率”。我说课的程序主要由说教材、说教法、说学法、说教学程序这四个部分组成。

1、教材分析:直线的倾斜角和斜率是解析几何的重要概念之一,也是直线的重要的几何要素。学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以坐标化(解析化)的方式来研究直线相关性质,而本节直线的倾斜角与斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节也初步向学生渗透解析几何的基本思想和基本方法。因此,本节课的有着开启全章,奠定基调,渗透方法,明确方向,承前启后的作用。

2、教学目标

根据本课教材的特点,新大纲对本节课的教学要求,结合学生身心发展的合理需要,我从三个方面确定了以下教学目标:

(1)知识与技能目标:

了解直线的方程和方程的直线的概念;在新的问题的情境中,去主动构建理解直线的倾斜角和斜率的定义;初步感悟用代数方法解决几何问题的思想方法。

(2)过程与方法目标:

引导学生观察发现、类比,猜想和实验探索,培养学生的创新能力和动手能力

(3)情感、态度与价值观目标:

在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,实现共同探究、教学相长的教学情境。

3、教学重点、难点

(1)教学重点:理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率的计算公式。

(2)教学难点:斜率公式的推导

课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情境,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效地渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。根据这样的原则及所要完成的教学目标,我采用观察发现、启发引导、探索实验相结合的教学方法。启发引导学生积极的思考并对学生的思维进行调控,使学生优化思维过程;在此基础上,通过学生交流与合作,从而扩展自已的数学知识和使用数学知识及数学工具的能力,实现自觉地、主动地、积极地学习。

在实际教学中,根据学生对问题的感受程度不同,学习热情、身心特点等,对学生进行针对性的学法指导。主要运用引导、启发、情感暗示等隐性形式来影响学生,多提供机会让学生去想、去做,给学生自己动手、参与教学过程、发现问题、讨论问题提供了很好的机会。这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会学习,学会探索问题的方法,培养学生的能力。

1、导入新课:

提出问题:如何确定一条直线的位置?

(1)两点确定一条直线;

(2)一点能确定一条直线吗?

过一点p可以作无数条直线,这些直线的倾斜程度不同,如何描述直线的倾斜程度?本节课将解决这个问题。

设计意图:打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,直线的倾斜角这一概念的产生是因为研究直线的需要,从而明确新课题研究的必要性,触发学生积极思维活动的`展开。

2、探究发现:

(1)直线的倾斜角:

有新课导入直接引出此概念,学生易于接受,但是容易忽视其中的重点字。因此重点强调定义的几个注意点:①x轴正半轴;②直线向上方向;③当直线与x轴平行或重合时,直线的倾斜角为0度。由此得出直线倾斜角的取值范围。

(2)直线的确定方法:

确定平面直角坐标系中一条直线位置的几何要素:直线上的一个定点以及它的倾斜角,二者缺一不可。

(3)直线的斜率:

注:直线的倾斜角与斜率的区别:

所有的直线都有倾斜角;但是不是所有直线都有斜率(倾斜角为90°的直线没有斜率,因为90°的正切不存在。)

(4)由两点确定的直线的斜率:

先让学生自主探究、学生之间互相交流,然后再由师生共同归纳得出结论:

经过两点p1(x1.y1),p2(x2,y2)直线的斜率公式:(x1≠x2)。

3、学用结合:

(1)例题讲解:p89-90/例题1和例题2。

例题的讲解主要关注思路的点拨以及解题过程的规范书写。

(2)课堂练习:

p91/练习第1、2题

4、总结归纳:

直线的倾斜角直线的斜率直线的斜率公式

定义

取值范围

5、布置作业:p 91/练习第3、4题。

26204
领取福利

微信扫码领取福利

微信扫码分享