欢迎访问散文集文学网!

最新说明方法及作用

故事会 分享 时间: 加入收藏 我要投稿 点赞

在日常的学习、工作、生活中,肯定对各类范文都很熟悉吧。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

说明方法及作用篇一

【证法1】(梅文鼎证明)

做四个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c.把它们拼成如图那样的一个多边形,使d、e、f在一条直线上.过c作ac的延长线交df于点p.∵d、e、f在一条直线上,且rtδgef≌rtδebd,∴∠egf=∠bed,∵∠egf+∠gef=90°,∴∠bed+∠gef=90°,∴∠beg=180º―90º=90º.又∵ab=be=eg=ga=c,∴abeg是一个边长为c的正方形.∴∠abc+∠cbe=90º.∵rtδabc≌rtδebd,∴∠abc=∠ebd.∴∠ebd+∠cbe=90º.即∠cbd=90º.又∵∠bde=90º,∠bcp=90º,bc=bd=a.∴bdpc是一个边长为a的正方形.同理,hpfg是一个边长为b的正方形.设多边形ghcbe的面积为s,则,∴.【证法2】(项明达证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使e、a、c三点在一条直线上.过点q作qp‖bc,交ac于点p.过点b作bm⊥pq,垂足为m;再过点

f作fn⊥pq,垂足为n.∵∠bca=90º,qp‖bc,∴∠mpc=90º,∵bm⊥pq,∴∠bmp=90º,∴bcpm是一个矩形,即∠mbc=90º.∵∠qbm+∠mba=∠qba=90º,∠abc+∠mba=∠mbc=90º,∴∠qbm=∠abc,又∵∠bmp=90º,∠bca=90º,bq=ba=c,∴rtδbmq≌rtδbca.同理可证rtδqnf≌rtδaef.【证法3】(赵浩杰证明)

做两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形.分别以cf,ae为边长做正方形fcji和aeig,∵ef=df-de=b-a,ei=b,∴fi=a,∴g,i,j在同一直线上,∵cj=cf=a,cb=cd=c,∠cjb=∠cfd=90º,∴rtδcjb≌rtδcfd,同理,rtδabg≌rtδade,∴rtδcjb≌rtδcfd≌rtδabg≌rtδade

∴∠abg=∠bcj,∵∠bcj+∠cbj=90º,∴∠abg+∠cbj=90º,∵∠abc=90º,∴g,b,i,j在同一直线上,【证法4】(欧几里得证明)

做三个边长分别为a、b、c的正方形,把它们拼成如图所示形状,使h、c、b三点在一条直线上,连结

bf、cd.过c作cl⊥de,交ab于点m,交de于点

l.∵af=ac,ab=ad,∠fab=∠gad,∴δfab≌δgad,∵δfab的面积等于,δgad的面积等于矩形adlm的面积的一半,∴矩形adlm的面积=.同理可证,矩形mleb的面积=.∵正方形adeb的面积

=矩形adlm的面积+矩形mleb的面积

∴,即.勾股定理的别名

勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。

我国是发现和研究勾股定理最古老的国家。我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“勾广三,股修四,经隅五”,其意为,在直角三角形中“勾三,股四,弦五”.因此,勾股定理在我国又称“商高定理”.在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。

在法国和比利时,勾股定理又叫“驴桥定理”。还有的国家称勾股定理为“平方定理”。

在陈子后一二百年,希腊的著名数学家毕达哥拉斯发现了这个定理,因此世界上许多国家都称勾股定理为“毕达哥拉斯”定理.为了庆祝这一定理的发现,毕达哥拉斯学派杀了一百头牛酬谢供奉神灵,因此这个定理又有人叫做“百牛定理”.前任美国第二十届总统加菲尔德证明了勾股定理(1876年4月1日)。

证明

这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。路明思(elishascottloomis)的pythagoreanproposition一书中总共提到367种证明方式。

有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。

说明方法及作用篇二

勾股定理证明方法

勾股定理是初等几何中的一个基本定理。所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。

中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?" 商高回答说:"数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩得到的一条直角边‘勾等于3,另一条直角边’股等于4的时候,那么它的斜边弦就必定是5。这个原理是大禹在治水的时候就

总结

出来的呵。" 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。所以现在数学界把它称为勾股定理是非常恰当的。

在《九章算术》一书中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”《九章算术》系统地总结了战国、秦、汉以来的数学成就,共收集了246个数学的应用问题和各个问题的解法,列为九章,可能是所有中国数学著作中影响最大的一部。

中国古代的数学家们最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。

上中间的那个小正方形组成的。

每个直角三角形的面积为ab/2;

中间的小正方形边长为b-a,则面积为(b-a)2。

于是便可得如下的式子:

4×(ab/2)+(b-a)2=c

2化简后便可得: a2+b2=c2

在这幅“勾股圆方图”中,以弦为边长得到正方形abde是由4个相等的直角三角形再加

刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。

1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的证法。1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法

古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。

说明方法及作用篇三

2.2直接证明与间接证明bca案

主备人:史玉亮 审核人:吴秉政使用时间:2023年2-1

1学习目标:

1.了解直接证明的两种基本方法,即综合法和分析法。了解间接证明的一种基本方法——反证法。

2.了解综合法和分析法的思考过程与特点,并会用两种方法证明。了解反证法的解题步骤,思维过程及特点。

重点:

1.对综合法和分析法的考查是本课的重点。应用反证法解决问题是本课考查的热点。

2.命题时多以考查综合法为主,选择题、填空题、解答题均有可能出现。反证法仅作为客观题的判断方法不会单独命题。

b案

一、直接证明

1.定义:直接证明是从___________或___________出发的,根据已知的_________、________________,直接推证结论的真实性。

2.直接证明的方法:______________与________________。

二、综合法

1.定义:综合法是从___________推导到______________的思维方法。具体地说,综合法 从__________除法,经过逐步的___________,最后达到_______________。

 

 „ 

三、

分析法

1.定义:分析法是从__________追溯到__________的思维方法,具体地说,分析法是从________出发,一步一步寻

求结论成立的____________,最后达到

_________或__________。

  „ 

四、反证法的定义

由证明pq转向证明prt,t与_________矛盾,或与某个________矛盾,从而判定_________,推出___________的方法,叫做反证法。

预习检测:

1.已知|x|<1,|y|<1,下列各式成立的是()

a.|xy||xy|≥2b.x1xyd.|x||y|

ln2ln3ln5,b,c,则()23

5a.abcb.cbac.cabd.bac 2.若a

3.命题“三角形中最多只有一个内角是直角”的结论的否定是()

a.有两个内角是直角

b.有三个内角是直角

c.至少有两个内角是直角

d.没有一个内角是直角

4.abcd的必要不充分条件是()

a.acb.bdc.ac且bdd.ac或bd

5.“自然数a,b,c中恰有一个是偶数”的反证法设为()

a.自然数a,b,c都是奇数b.自然数a,b,c都是偶数

c.自然数a,b,c中至少有两个是偶数d.自然数a,b,c中都是奇数或至少有两个偶数

6.已知a是整数,a2为偶数,求证:a也是偶数。

c案

一、综合法

例1求证:12

3log19log1919

253log2

2.已知n是大于1的自然数,求证:log(n1)log(n2)

n(n1)

二、分析法

例2.求证

2变式突破: 已知a,b,c表示三角形的三边,m0,求证:

三、反证法:

例3.(1)证明:2不是有理数。

变式突破:若a、b、c均为实数,且ax2y

求证:a、b、c中至少有一个大于0.2abc ambmcm2,by22z3,cz22x6.当堂检测:

1.“x

0”是“0”成立的()

a.充分非必要条件 b.必要非充分条件 c.非充分非必要条件 d.充要条件

2.设alog54,b(log53)2,clog45,则()

a.acbb.bcac.abcd.bac

3.设x,y,zr,ax111,by,cz,则a,b,c三数()yzx

a.至少有一个不大于2b.都小于2c.至少有一个不小于2d.都大于

22224.若下列方程:x4ax4a30,x(a1)xa0,x2ax2a0至少有2

一个方程有实根,试求实数a的取值范围。

a案

1.a、b为△abc的内角,∠a>∠b是sinasinb的()

a.充分不必要条件 b.必要不充分条件 c.充要条件 d.既不充分也不必要条件

2.若向量a(x,3)(xr),则“x4”是“|a|5”的()

a.充分不必要条件 b.必要而不充分条件 c.充要条件d.既不充分又不必要条件

3.已知数列{an}为等比数列,sn是它的前n项的和,若a2a32a1且a4与2a7的等差中项为5,则s5=()a.35b.33c.31d.29

44.定义在r上的函数f(x)满足f(xy)f(x)f(y)2xy(x,yr),f(1)2,则f(2)等于()a.2b.3c.6d.9

5.分析法证明问题是从所证命题的结论出发,寻求使这个结论成立的()

a.充分条件b.必要条件c.重要条件d.既非充分条件又非必要条件

6.下面四个不等式:①abc≥abbcca;②a(1a)≤2221ba;③≥2; 4ab

④(a2b2)(c2d2)≥(acbd)2,其中恒成立有()a.1个 b.2个 c.3个 d.4个

7.若x,y0且xy2,则1y1x1y1x和的值满足()a.和的中至少xxyy

有一个小于2b.1y1x1y1x和都小于2c.和都大于2d.不确定 xxyy

8.已知、为实数,给出下列三个论断:

①0;②||

5;③|||个论断为结论,写出你认为正确的命题是______________。

9.设a0,b0,c0,若abc1,则

111≥______________。abc

说明方法及作用篇四

数学证明题证明方法(转)

2011-04-22 21:36:39|分类:|标签: |字号大中小 订阅

2011/04/2

2从命题的题设出发,经过逐步推理,来判断命题的结论是否正确的过程,叫做证明。

要证明一个命题是真命题,就是证明凡符合题设的所有情况,都能得出结论。要证明一个命题是假命题,只需举出一个反例说明命题不能成立。证明一个命题,一般步骤如下:

(1)按照题意画出图形;

(2)分清命题的条件的结论,结合徒刑,在“已知”一项中写出题设,在“求证”一项中写出结论;

(3)在“证明”一项中,写出全部推理过程。

一、直接证明

1、综合法

(1)定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.(2)综合法的特点:综合法又叫“顺推证法”或“由因导果法”.它是从已知条件和某些学过的定义、公理、公式、定理等出发,通过推导得出结论.2、分析法

(1)定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做分析法.(2)分析法的特点:分析法又叫“逆推证法”或“执果索因法”.它是要证明结论成立,逐步寻求推证过程中,使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.二、间接证明

反证法

1、定义:一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.2、反证法的特点:

反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.3、反证法的优点:

对原结论否定的假定的提出,相当于增加了一个已知条件.4反证法主要适用于以下两种情形:

(1)要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;

(2)如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形

信息流广告 网络推广 周易 易经 代理招生 二手车 网络营销 招生代理 旅游攻略 非物质文化遗产 查字典 精雕图 戏曲下载 抖音代运营 易学网 互联网资讯 成语 成语故事 诗词 工商注册 注册公司 抖音带货 云南旅游网 网络游戏 代理记账 短视频运营 在线题库 国学网 知识产权 抖音运营 雕龙客 雕塑 奇石 散文 自学教程 常用文书 河北生活网 好书推荐 游戏攻略 心理测试 好做题 石家庄人才网 考研真题 汉语知识 心理咨询 手游安卓版下载 兴趣爱好 网络知识 十大品牌排行榜 商标交易 单机游戏下载 短视频代运营 宝宝起名 范文网 电商设计 职业培训 免费发布信息 服装服饰 律师咨询 搜救犬 Chat GPT中文版 经典范文 优质范文 工作总结 二手车估价 实用范文 爱采购代运营 古诗词 衡水人才网 石家庄点痣 养花 名酒回收 石家庄代理记账 女士发型 搜搜作文 石家庄人才网 铜雕 词典 围棋 chatGPT 读后感 玄机派 企业服务 法律咨询 chatGPT国内版 chatGPT官网 励志名言 河北代理记账公司 文玩 朋友圈文案 语料库 游戏推荐 男士发型 高考作文 PS修图 儿童文学 买车咨询 工作计划 礼品厂 舟舟培训 IT教程 手机游戏推荐排行榜 暖通,电采暖, 女性健康 苗木供应 主题模板 短视频培训 优秀个人博客 包装网 创业赚钱 养生 民间借贷律师 绿色软件 安卓手机游戏 手机软件下载 手机游戏下载 单机游戏大全 免费软件下载 石家庄网络推广 石家庄招聘 石家庄网络营销 培训网 网赚 手游下载 游戏盒子 职业培训 资格考试 成语大全 英语培训 艺术培训 少儿培训 苗木网 雕塑网 好玩的手机游戏推荐 汉语词典 中国机械网 美文欣赏 红楼梦 道德经 网站转让 鲜花
210040
领取福利

微信扫码领取福利

微信扫码分享