欢迎访问散文集文学网!

最新人教版高一数学知识难点考点内容梳理图 高一数学必考知识点归纳

故事会 分享 时间: 加入收藏 我要投稿 点赞

范文为教学中作为模范的文章,也常常用来指写作的模板。常常用于文秘写作的参考,也可以作为演讲材料编写前的参考。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?下面是小编为大家收集的优秀范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

人教版高一数学知识难点考点内容梳理图 高一数学必考知识点归纳篇一

1、圆柱体:表面积:2πrr+2πrh体积:πr2h(r为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:表面积:πr2+πr[(h2+r2)的]体积:πr2h/3(r为圆锥体低圆半径,h为其高,

3、a-边长,s=6a2,v=a3

4、长方体a-长,b-宽,c-高s=2(ab+ac+bc)v=abc

5、棱柱s-h-高v=sh

6、棱锥s-h-高v=sh/3

7、s1和s2-上、下h-高v=h[s1+s2+(s1s2)^1/2]/3

8、s1-上底面积,s2-下底面积,s0-中h-高,v=h(s1+s2+4s0)/6

9、圆柱r-底半径,h-高,c—底面周长s底—底面积,s侧—,s表—表面积c=2πrs底=πr2,s侧=ch,s表=ch+2s底,v=s底h=πr2h

10、空心圆柱r-外圆半径,r-内圆半径h-高v=πh(r^2-r^2)

11、r-底半径h-高v=πr^2h/3

12、r-上底半径,r-下底半径,h-高v=πh(r2+rr+r2)/313、球r-半径d-直径v=4/3πr^3=πd^3/6

14、球缺h-球缺高,r-球半径,a-球缺底半径v=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台r1和r2-球台上、下底半径h-高v=πh[3(r12+r22)+h2]/6

16、圆环体r-环体半径d-环体直径r-环体截面半径d-环体截面直径v=2π2rr2=π2dd2/4

17、桶状体d-桶腹直径d-桶底直径h-桶高v=πh(2d2+d2)/12,(母线是圆弧形,圆心是桶的中心)v=πh(2d2+dd+3d2/4)/15(母线是抛物线形)

练习题:

1.正四棱锥p—abcd的侧棱长和底面边长都等于,有两个正四面体的棱长也都等于.当这两个正四面体各有一个面与正四棱锥的侧面pad,侧面pbc完全重合时,得到一个新的多面体,该多面体是()

(a)五面体

(b)七面体

(c)九面体

(d)十一面体

2.正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的表面积为()

(a)9

(b)18

(c)36

(d)64

3.下列说法正确的是()

a.棱柱的侧面可以是三角形

b.正方体和长方体都是特殊的四棱柱

c.所有的几何体的表面都能展成平面图形

d.棱柱的各条棱都相等

人教版高一数学知识难点考点内容梳理图 高一数学必考知识点归纳篇二

空间几何体表面积体积公式:

1、圆柱体:表面积:2πrr+2πrh体积:πr2h(r为圆柱体上下底圆半径,h为圆柱体高)

2、圆锥体:表面积:πr2+πr[(h2+r2)的]体积:πr2h/3(r为圆锥体低圆半径,h为其高,

3、a-边长,s=6a2,v=a3

4、长方体a-长,b-宽,c-高s=2(ab+ac+bc)v=abc

5、棱柱s-h-高v=sh

6、棱锥s-h-高v=sh/3

7、s1和s2-上、下h-高v=h[s1+s2+(s1s2)^1/2]/3

8、s1-上底面积,s2-下底面积,s0-中h-高,v=h(s1+s2+4s0)/6

9、圆柱r-底半径,h-高,c—底面周长s底—底面积,s侧—,s表—表面积c=2πrs底=πr2,s侧=ch,s表=ch+2s底,v=s底h=πr2h

10、空心圆柱r-外圆半径,r-内圆半径h-高v=πh(r^2-r^2)

11、r-底半径h-高v=πr^2h/3

12、r-上底半径,r-下底半径,h-高v=πh(r2+rr+r2)/313、球r-半径d-直径v=4/3πr^3=πd^3/6

14、球缺h-球缺高,r-球半径,a-球缺底半径v=πh(3a2+h2)/6=πh2(3r-h)/3

15、球台r1和r2-球台上、下底半径h-高v=πh[3(r12+r22)+h2]/6

16、圆环体r-环体半径d-环体直径r-环体截面半径d-环体截面直径v=2π2rr2=π2dd2/4

17、桶状体d-桶腹直径d-桶底直径h-桶高v=πh(2d2+d2)/12,(母线是圆弧形,圆心是桶的中心)v=πh(2d2+dd+3d2/4)/15(母线是抛物线形)

人教版高一数学知识难点考点内容梳理图 高一数学必考知识点归纳篇三

集合的有关概念

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素

注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?a和a?a,二者必居其一)、互异性(若a?a,b?a,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件

2)集合的表示方法:常用的有列举法、描述法和图文法

3)集合的分类:有限集,无限集,空集。

4)常用数集:n,z,q,r,n_

子集、交集、并集、补集、空集、全集等概念

1)子集:若对x∈a都有x∈b,则ab(或ab);

2)真子集:ab且存在x0∈b但x0a;记为ab(或,且)

3)交集:a∩b={x|x∈a且x∈b}

4)并集:a∪b={x|x∈a或x∈b}

5)补集:cua={x|xa但x∈u}

注意:a,若a≠?,则?a;

若且,则a=b(等集)

集合与元素

掌握有关的术语和符号,特别要注意以下的符号:(1)与、?的区别;(2)与的区别;(3)与的区别。

子集的几个等价关系

①a∩b=aab;②a∪b=bab;③abcuacub;

④a∩cub=空集cuab;⑤cua∪b=iab。

交、并集运算的性质

①a∩a=a,a∩?=?,a∩b=b∩a;②a∪a=a,a∪?=a,a∪b=b∪a;

③cu(a∪b)=cua∩cub,cu(a∩b)=cua∪cub;

有限子集的个数:

设集合a的元素个数是n,则a有2n个子集,2n-1个非空子集,2n-2个非空真子集。

练习题:

已知集合m={x|x=m+,m∈z},n={x|x=,n∈z},p={x|x=,p∈z},则m,n,p满足关系()

a)m=npb)mn=pc)mnpd)npm

分析一:从判断元素的共性与区别入手。

解答一:对于集合m:{x|x=,m∈z};对于集合n:{x|x=,n∈z}

对于集合p:{x|x=,p∈z},由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以mn=p,故选b。

32322
领取福利

微信扫码领取福利

微信扫码分享