欢迎访问散文集文学网!

2023年解三角形教学反思数学

故事会 分享 时间: 加入收藏 我要投稿 点赞

在日常学习、工作或生活中,大家总少不了接触作文或者范文吧,通过文章可以把我们那些零零散散的思想,聚集在一块。范文书写有哪些要求呢?我们怎样才能写好一篇范文呢?这里我整理了一些优秀的范文,希望对大家有所帮助,下面我们就来了解一下吧。

解三角形教学反思数学篇一

本节课我让学生经历了找三角形,画三角形,说三角形,作三角形的高等活动。学会了画三角形的高。课始,让学生从主题图中找三角形,从生活中找三角形,使学生体会到生活中的美是由许多几何图形构成的,三角形就是其中的一种。

本节课,按照我校“先学后教,当堂训练”教学模式,,让学生先根据学习目标、自学指导,先学后教,这样各层次学生都有足够的时间去思考,都会有自己的发现和收获,在本节课探究三角形的高时,由于学生有了自学基础,又让学生到黑板上画高并说出自己是怎么画的。通过交流、展示,学生很顺利地掌握了高的画法,这样,大部分学生都能通过自学课本,从中获得知识,培养了学生的自学能力,也让学生体会到了学习的乐趣。

由于学生已经进行了自学,课堂上根据自学情况让学生进行交流,在教学三角形的含义时,我通过让学生观察围成三角形的过程,并在练习中让学生理解围成的含义,最后在此基础上自己来总结到底什么样的图形才叫做三角形。

不足之处:

在这节课中还有很多不足之处,对概念的教学还不够突出,画高的地方引导还不是很好,没很好的突破难点,关于怎样做三角形的高,个别学生的认识还比较模糊,在做练习时,我发现一个学生的三角尺放错了,另一个学生在直角三角形作高时出现了找不清顶点的错误,这些错误的出现,归结起来还是对底和高概念的认识模糊造成的。这个问题,没有给孩子放宽画高的空间,应该让更多孩子

多练习正确地放一放三角尺。如果这两个环节处理得到位,会使全班同学对高的认识和画法更清晰。

总之,精心设计教学中的每一个环节对于学生掌握知识是非常重要的,因此,老师只有通过不断的实践和反思,才能使我们的数学课堂一步一步走向有效、高效。

解三角形教学反思数学篇二

在《相似三角形》的复习课中,我安排了两节复习课。第一节着重复习比例线段的基本知识及基本技能;第二节则采取“探究式教学”来复习相似三角形的性质与判定,培养学生的实践及探索能力。

比例线段在平面几何计算和证明中,应用十分广泛,相对已学的两条线段相等关系而言,四条线段成比例关系对学生分析问题及综合解题的能力要求更高。第一节课的复习中,着重复习了比例线段的意义及性质,同时通过例题进行巩固,学生掌握的效果不错。

在第二节课中,主要通过以下三个方面展示出学生的探究性学习:

本节课以学生的自主探索为主线,课前布置学生自己对比例线段的运用进行整理,这样不仅复习了所学知识,而且可以使学生亲身体验“实验操作-探索发现-科学论证”获得知识的过程,体验科学发现的一般规律;解决问题时,让学生自己提出探索方案,使学生的主体地位得到尊重;课后让学有余力的学生继续挖掘题目资源,用发展的眼光看问题,从而提高学习效率,培养学生的思维能力。

在教学中,教师是学生学习的组织者、引导者、合作者及共同研究者,要鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新。在课堂中,我着重引导学生自己小结相似三角形的性质及判定方法,同时给予肯定。在后续的例题分析中,也是通过一步步的引导,让学生自己思考、分析并得出整个解题的过程及步骤。关键时点拔,不足时补充。

学生体验了学习过程后,从单纯的重视知识点的记忆,复习变为有意识关注学习方法的掌握,数学思想的领悟,同时让学生关注课堂小结,进行自我体会,自我反思,在反思中成长、进步。

在《相似三角形》这一复习课中,通过学生自主探索,让学生主动学习,培养了学生积极主动的探索创新精神,学生也能掌握到了相关的知识。但是,仍有不足之处。问题的应用中,即利用相似三角形的性质或判定证明的过程中,思路仍是不够清晰,书写的过程仍是不够完整。也就是说,缺少了教师的引导分析,则学生不知向何处思考。这是大部分学生具有的情况。

解三角形教学反思数学篇三

本节课是一节复习课,内容是应用解直角三角形的知识解决实际问题。在教学设计中,我针对学生对三角函数及对直角三角形的边角关系认识的模糊,计算能力薄弱等特点,我决定把教学的重、难点放在了解决有关实际问题的建构数学模型上。通过对知识点的梳理、分析例题的解题思路、例题变式练习及巩固练习等教学,绝大部分学生能很好地掌握了如何建构模型的解决方法,很好地达到了本节课的教学目的。

由于自己在如何上好一节复习课上还处在摸索阶段,所以在设计与安排上还存在很多不足,如本节课设计容量较大,有1个实际应用例题抽象出四个基本变式数学模型,学生对每个问题逐个探究解答,时间感觉比较紧。但对另外一部分学生来说,他们基础较弱,对数学的应用不是那么得心应手,不会合理找出边角关系,当然就不能准确寻求问题的答案。

我觉得这堂课有以下几个优点:

1、充分调动了学生参与课堂的积极性。

2、学生敢于提出问题、分析问题。

3、老师起到了引导的作用,小组交流、展示很有成效,兼顾了不同层次学生的学习。

不足:1、中间的小结让学生完成更好些

2、给学生思考时间、交流时间过多,独立完成时间较少。

总之在以后的教学中,讲解不宜太多,但是更多的是建立在学生的思维基础上,所以需要给他们留较多的时间。讲的太多反而得不到效果。应该注重适当的提问,把注意力集中在学生的思维上,提高学生的思维品质。在课堂上将努力做到让沉闷的课堂教学鲜活起来,让课堂真正成为数学活动的'场所,成为讨论交流的学堂,成为学生展示自我的舞台!

解三角形教学反思数学篇四

解直角三角形及其应用是本章的重要内容。一个直角三角形有三个角、三条边这六个元素,解直角三角形就是由已知元素求出未知元素的过程。除了一个直角外,知道两个元素(其中至少有一条边),就能求出其他元素。这样的情况一般有五种,而解直角三角形的方法是本章内容的重点,因为,本章的学习目的主要就是使学生能够熟练地解直角三角形。而且也只有掌握了直角三角形的解法,才能够去解决与直角三角形有关的应用问题。在解直角三角形的应用这一节中,更充分地把“解直角三角形”运用到实际问题中去。通过一系列实际问题的解决,训练了学生分析与解决实际问题的能力,培养学生把实际问题转化为教学问题的能力。

在教学过程中,首先引导学生已学过的直角三角形有关元素之间关系的知识进行归纳整理,然后通过两道例题,体会直角三角形中除直角外的五个元素中至少要获得两个条件,就可以求得三个元素的特点,并归纳两个条件的类型。通过对直角三角形的理性分析和解题实践后,让学生体会到直角三角形中边角间的关系。主要通过三角形内角和与勾股定律和锐角三角函数比来表述。此外对不是直角三角形的,要领会数学化归的思想,通过作高,转化为直角三角形再来求解。

我觉得这堂课有以下几个特点:

1、要多给学生练的机会,例2可以让学生讨论完成,当课堂练习。

2、中间的小结,对学生有难度,可以在学生略微思考的情况下,老师做适当引导下,由老师得出,这个结论并不需要记忆,仅仅是给学生一个直接的感受:原来所有的这一类型的题目都可以这样解。

3、语速还是过快,要留给学生多的时间思考。

4、讲解不宜太多,但是更多的是建立在学生的思维基础上,所以需要给他们留较多的时间。讲的太多反而得不到效果。应该注重适当的提问,把注意力集中在学生的思维上,提高学生的思维品质。

5、要多鼓励学生进行变式训练,达到自己会编题,知识就掌握牢固了。

总之,本节课是我对新课程理念的一次尝试,必存在缺陷,这将促使我进一步研究和探索。在以后的教学中,我在课堂上将努力做到让沉闷的课堂教学鲜活起来,让课堂真正成为数学活动的场所,成为讨论交流的学堂,成为学生展示自我的舞台!

解三角形教学反思数学篇五

在解直角三角形中,我们习惯于利用三角函数根据题目中已知的边角元素来求另外的边角元素。其实,有时候利用方程来解决这样的问题甚至能起到更好的效果。

在《解直角三角形》中第四节船有触礁的危险中,其情境引入是这样的:

海中有一个小岛a,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在a岛南偏西55°的b处,往东行使20海里后到达该岛的南偏西25°的c处.之后,货轮继续向东航行.你认为货轮继续向东航行途中会有触礁的危险吗?

对于本题,要判断船是否有触礁的危险,只需要判断该船行使的路线中,其到小岛a的最近距离是否在10海里范围内,过a作ad⊥bc于d,ad即为小船行驶过程中,其到小岛a的最近距离,因此需要求出ad的长.根据题意,∠bad=55°,∠cad=25°,bc=20,那么如何求ad的长呢?

教参中是这样给出思路的,过a作bc的垂线,交直线bc于点d,得到rt△abd和rt△acd,从而bd=adtan55°,cd=adtan25°,adtan55°-adtan25°=20.这样就可以求出ad的长.这里,需要学生把握三点:第一,两个直角三角形;第二,bd-cd=20;第三,用ad正确地表示bd和cd.用这种思路,多数学生也能够理解。

但教学过程中,我发现利用方程的思路来分析这道题目,学生更容易接受。题目中要求ad的长,我们可以设ad的长为x海里,其等量关系是:bd-cd=20,关键是如何用x来表示cd和bd的长。这样,学生就很容易想到需要在两个直角三角形利用三角函数来表示:rt△abd中,tan∠bad=从而,bd=xtan55°;rt△acd中,tan∠cad=,从而,cd=xtan25°,这样根据题意得:xtan55°-xtan25°=20,然后利用计算器算出tan55°和tan25°值,这样就可以利用方程来很容易的解决这样一个题目,并且是大家很熟悉很拿手的一元一次方程。

可见,教学有法,教无定法,同样一道题目,不同的方法,却能够让学生理解起来,减轻许多思维障碍,这不正是我们教学中所要达到效果吗?

89657
领取福利

微信扫码领取福利

微信扫码分享