欢迎访问散文集文学网!

2023年数学六年级上册的教学设计

故事会 分享 时间: 加入收藏 我要投稿 点赞

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。那么我们该如何写一篇较为完美的范文呢?以下是我为大家搜集的优质范文,仅供参考,一起来看看吧

数学六年级上册的教学设计篇一

1、在学生已有的分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。

2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。

3、引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。

教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。

教学难点:引导学生总结分数乘整数的计算法则。

出示复习题。

1.根据题意列出算式:

5个12是多少?

3个14是多少?

2.下列句子中那些可以看做单位1

猎豹的速度是狮子的七分之三。

参加合唱队的同学占全班人数的五分之一。

红花比黄花多二分之一。

十月比九月节约四分之三。

3.计算:3/10 +3/ 10 + 3/10 =

3/10 + 3/10+ 3/10这题我们还可以怎么计算?

今天我们就来学习分数乘法。

1、利用3/10 + 3/10 + 3/10教学分数乘法。

(1)这道加法算式中,加数各是多少?(都是3/10)

(2)表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3/10 ×3)

(3) 3/10 +3/10+ 3/10=9,那么3/10 + 3/10 + 3/10= 3/10 ×3,

所以3/ 10 ×3=____________=9。同学们想想看,3/10 ×3=9计算过程是怎样的?

谁能把它补充完整

2、出示例1,

(1)理解题意:

引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的2/11 ”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。

(2)引导学生根据线段图理解,

“人跑一步的距离相当于袋鼠跳一下的2/11 ”是什么意思?如何理解“相当于”?再通过线段图帮助理解。画一条线段,表示袋鼠跳一下的距离。“人跑一步的距离相当于袋鼠

跳一下的2/11 ”,就要把袋鼠跳一下的距离即这一条线段看作单位“1”,把这条线段平均分成11份,其中的2份就表示人跑一步的距离。求“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个2/11是多少?

(列式:2/11×3 = 6/11 )

有没有更简便的计算方法呢?独立完成。指生板演。出示课件演示。

3、结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。

4、练习:练习完成“做一做”第2题。

5、教学例2

(1)出示3/8×6,学生独立计算。

(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?

(3)学生通过自己的想法的来约分:

a、先约分再计算;

b、先计算得出乘积后约分。

(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

6.练一练,课件出示,学生独立计算。然后订正。

比赛:

第一回合

1、完成“做一做”的第一题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

第二回合

2、“做一做”第3题。(提醒学生,计算前先观察分数的分母与整数是否可以约分,养成先约分在计算的习惯)

今天你有什么收获?

练习二第1、2、4题。

数学六年级上册的教学设计篇二

余老师原先的引入是从一则广告开始的,香飘飘奶茶一年所卖出的杯子有3亿多,接起来可以绕地球赤道一周。看广告、说周长、找关系、再化繁为简,这样引入有三个好处:一是激发学生学习兴趣,学生看到广告进入课堂,很新鲜;二是从地球赤道整个巨大的圆回到纸上的小圆,要研究大圆的周长和直径的关系,我们先从小圆开始研究,这就是华罗庚所说的化繁为简的思想方法;三是生活中的一般实例都是先测量出周长再求直径,比如,测量一棵树的直径,就是先量出它的周长等,这个广告也是先有周长,我们再来探究赤道直径是多少。

有三个这么明显的优点,为什么会弃而不用呢?因为它有一个巨大的缺点,那就是时间!整个过程大约用了10分钟,才进入新课探究周长和直径的关系。一个缺点把所有的优点都掩盖了,所以,余老师改成下面的引入。先出示一个普通三角形,问它的周长在哪里,要测量什么,怎么计算?再出示一个正方形,也是问同样的问题,最后再追问:为什么只要测量一次,正方形的周长时边长的几倍?最后在出示圆。这种引入的优点是什么呢?一是从平面图形的周长引入,和前面所学的连成一条线,形成知识系统;二是这节课的一个内在线索是探寻圆周长和直径的关系,这个比值是一个固定的数!正方形正好具备了相似的关系,正方形的周长时变长的4倍,也是一个固定的数;三是时间,前后不到3分钟!因为课的导入追求迅速、高效,所以余老师采用了第二种方法导入。

关于课堂当中的操作,大多数是教师的指令行为,老师说做什么就做什么,学生根本不明白老师为什么要我们这么做!在本节课中,余老师通过巧妙地问题设计,引导学生自发的进行探究,"这两个圆,哪个圆的周长比较长?""圆的周长和什么有关?""怎么样研究它们之间的关系?""怎样测量圆的周长?"每个问题都经过精心设计,逐步引起学生探究的欲望,明确了操作的目的。在操作时提出了各种操作要求,小组合作分工,务求科学严谨!学生经历探究的过程也是一次科学研究的过程,这是学生忘记了知识之后所留下的最宝贵的智慧!

在本节课中,余老师在不知不觉中渗透了多种数学方法,比如在测量圆周长的时候是化曲为直的思想方法,在汇报操作结果的时候,渗透了"变"与"不变"辩证思想,这也是理解圆是一个固定的数的重要过程,在介绍刘徽割圆术的时候渗透了数形结合的思想等等。在介绍圆周率的历史的时候,提到了我国研究圆周率的主要人物,以及和西方的比较,渗透了思想感情教育。这些数学文化和数学思想,都是我们在课堂中需要挖掘和渗透的,这是数学素养的重要体现!

思考:圆周长÷直径=圆周率,这条规律的出现时机,余老师是放在学生的汇报之后,介绍圆周率的历史之前。我的想法是,学生的操作结果无法得出这是圆周率,这只是一个大概的范围,所以,我想,是不是放在接受前人的探究历史之后再将这条规律补充完整是不是好一些,这样,学生对圆周率是一个无限不循环的小数,是一个固定的数,会有一个更加明确的认识呢?

数学六年级上册的教学设计篇三

1.使学生认识圆,掌握圆的各部分名称。

2.通过动手操作、实验观察探索出圆的特征及同一个圆里半径和直径的关系。

3.初步学会用圆规画圆,培养学生的作图能力。

4.培养学生观察、分析、抽象、概括等思维能力。

教学重点

在动手操作中掌握圆的特征,学会用圆规画圆的方法。

教学难点

理解圆上的概念,归纳圆的特征。

课件

课件出示“大家都来当裁判喽!”

演示两人骑自行车的动画,一人的自行车轮子是圆形的,一人的自行车轮子是其它形状的。

让学生初步感知圆在生活中的应用。

(一)教师让学生举例说明周围哪些物体上有圆。

(二)认识圆的各部分名称和圆的特征。

1.学生拿出圆的学具。

2.教师:你们摸一摸圆的边缘,是直的还是弯的?

教师说明:圆是平面上的一种曲线图形。

3.通过具体操作,认识一下圆的各部分名称和圆的特征。

(1)先把圆对折、打开,换个方向,再对折,再打开……这样反复折几次。

教师提问:折过若干次后,你发现了什么?

仔细观察一下,这些折痕总在圆的什么地方相交?

教师指出:我们把圆中心的这一点叫做圆心。圆心一般用字母o表示。

教师板书:圆心

(2)用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?

教师指出:我们把连接圆心和圆上任意一点的线段叫做半径,半径一般用字母r表示。板书:半径

教师提问:根据半径的概念同学们想一想,半径应具备哪些条件?

在同一个圆里可以画多少条半径?

所有半径的长度都相等吗?

教师板书:在同一个圆里有无数条半径,所有半径的长度都相等。

(3)同学继续观察:刚才把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?

教师指出:我们把通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d来表示。板书:直径

教师提问:根据直径的概念同学们想一想,直径应具备什么条件?

在同一个圆里可以画出多少条直径?

自己用尺子量一量同一个圆里的几条直径,看一看,所有直径的长度都相等吗?

教师板书:在同一个圆里有无数条直径,所有直径的长度都相等。

(4)教师小结:通过刚才的学习我们知道,在同一个圆里有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。

(5)讨论:在同一个圆里,直径的长度与半径的长度又有什么关系呢?

如何用字母表示这种关系?

反过来,在同一个圆里,半径的长度是直径的几分之几?

教师板书:在同一个圆里,直径的长度是半径的2倍。

(三)反馈练习。

1、p58的“做一做”第1、3、4题

2、练习十四的第2、3题

(四)圆的画法。

1、学生自学,看书57页。

2、学生试画。

3、学生通过试画小结用圆规画圆的方法,注意的问题。

4、教师归纳板书:1.定半径;2.定圆心;3.旋转一周。

教师强调:画圆时,圆规两脚间的距离不能改变,有针尖的一脚不能移动,旋转时要把重心放在有针尖的一脚。

5、学生练习

p58的“做一做”第2题

(五)教师提问

为什么同学们画的圆不一样呢?什么决定圆的大小?什么决定圆的位置?

教师板书:半径决定圆的大小,圆心决定圆的位置。

(六)思考:体育课上,老师想在操场画一个大圆圈做游戏,没有这么大的圆规怎么办?

这节课我们学习了什么?通过这节课的学习你有什么收获?

练习十四的第1题

课后习题

练习十四的第1题。

数学六年级上册的教学设计篇四

数学最终是要为生活服务的,回归生活的数学才是有用的数学。本课内容和日常生活密切联系,学了就可以学以致用,可以让学生真正体会到数学的价值。

1.在了解生活中有关打折优惠措施的基础上,能利用百分数的知识,根据实际情况选择最佳的方案和策略,解决实际问题,深入理解折扣的意义。

2.通过小组合作学习、分析比较,培养学生运用所学知识解决实际问题的能力、合情思考能力。

3.激发学生对数学的兴趣,使学生能够辩证、全面地思考、对待实际生活中的问题, 用数学知识解决实际问题。

在了解生活中有关打折优惠措施的基础上,利用百分数的知识,根据不同的实际情况,通过分析比较选择最佳的方案和策略。

1、多种方案的计算。

2、合情推理。

多媒体课件一套。

1.谈话导入。

2、为学生创设到快餐厅看菜单的情境,引导学生从合算的角度选择套餐。

出示,如下图。

a套餐

原价:12.5元

现价:10.00元

b套餐

原价:11.8元

现价:10.00元

c套餐

原价:10.80元

现价:10.00元

(1)如果你去吃快餐,你选哪一种最合算?为什么?

(2)a套餐相当于打几折?

(3)b套餐也打8折,应付多少元?

实际生活中的打折多种多样,要反复计算、比较,才能够选择出最好的购买方法。

1.创设情境。

现在许多餐厅可以自己带饮料消费,餐厅的饮料可挺贵,要想合算我们不妨去超市逛一逛,买一些饮料再去吃饭。

甲商场 买大送小

乙商场 一律九折

丙商场 满30元一律八折

2.了解超市的优惠政策。

师:请你举例说一说你是怎么理解这些优惠措施的?

生:买大送小就是买一瓶大的送一瓶小的,前提是必须买大瓶的饮料。

打九折就是买100元钱的饮料现在只要付90元钱。

满30元打八折就是买饮料的总价必须达到30元才能打八折,不到30 元不打折。

数学六年级上册的教学设计篇五

《义务教育课程标准实验教材 数学》六年级上册第62~64页。

1.通过小组合作探究,实际测量计算理解圆周率的意义。

2.通过对比分析掌握圆周长的计算公式。

3.能用圆的周长的计算公式解决一些简单的数学问题。

4.通过对圆周率的计算,渗透爱国主义的思想。

重点:推导圆的周长的计算公式,准确计算圆的周长。

难点:理解圆周率的意义。

出示一块钟表

问题1:你能猜想小秒针的顶端在一分钟的时间里,所走过的轨迹是一个什么图形吗?

学生猜想。

教师演示小秒针的运动过程,证实学生的猜想是否正确。

问题2:你能知道不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程有多长吗?我们应该怎样解决这个问题呢?

生:先计算出走一圈的路程有多长,在计算出走60圈的长度。

师:非常好。那么小秒针走一圈的路程,就是这个圆的周长又怎么来求呢?今天我们就来学习怎样计算圆的周长。(引入课题——圆的周长)

(设计目的:通过学生身边的实物引入新课,能充分的调动学生的学习积极性,把学生的注意力集中到课堂中来。)

学生活动:请同学们拿出你准备好的圆,小组内交换圆,合作完成下表,看哪一组完成的最快。测量值精确到毫米。

物品名称

周长

直径

1号圆

2号圆

3号圆

4号圆

教师评价学生小组合作的情况。

(设计目的:强调学生的小组合作意识)

师:哪个小组汇报一下你们小组是怎么测量的,并展示一下小组测量的结果。

学生展示小组的成果。

(设计目的:通过实物投影,向其它小组的同学展示本小组的结果,增强学生的自信)

师:观察一下我们得到的几组数据,你发现什么规律了吗?

学生自由谈。

学生发现:1. 一个圆的周长总是直径的三倍多点。2. 周长和直径的比值与直径相乘可以得到圆的周长。

师:老师也做了一个圆,现在看一下老师是怎么测量这个圆的周长的。

课件展示圆的周长的测量方法。

(设计目的:通过让学生对比分析表格,教师课件展示圆的周长的测量过程,让学生能对圆的周长和直径之间的关系更加清晰,激发学生想要知道两者之间的具体关系的热情)

课件展示:圆的周长随直径的变化而在变化,而周长和直径之间的比值确是一个定值。

(设计目的:通过课件展示,让学生得到结论——圆的周长和直径的比值是一个定值,顺利得到圆周率的值)

小结1:圆周率:一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做——圆周率,用字母π表示。圆周率是一个无限不循环小数。它的值是:π=3.1415926535……,在实际的应用中,一般取它的近似数π≈3.14。

你知道吗?我们的祖先在圆周率的计算上可是有着辉煌的成绩的,你能讲给同学们听吗?

学生自由谈。

我们有这么伟大的祖先,相信我们这些站在伟大巨人肩膀上的现代中国人一定能取得更加辉煌的成绩。

(设计目的:通过学生讲故事渗透爱国主义思想)

小结2:你能通过分析表格得到圆的周长的计算公式了吗?

学生回答。(由于学生已经有了前面的层层铺垫和对表格的分析学生可以很容易的回答这个问题。)

圆的周长(用字母c表示)计算公式:c=πd或c=2πr

下面我们来看看怎样应用圆的周长计算公式来解决问题。

1.计算圆的周长

实物投影展示学生的解题过程

(设计目的:通过简单的图形计算让学生理解圆周长的计算公式的应用,并强调解题的书写过程)

2.一个圆形喷水池的半径是5m,它的周长是多少米?

(设计目的:通过转化把由半径求周长的问题转化为实际问题,让学生体会到学以致用)

3.小组交流错误原因。(可让其他学生避免同样的错误)

(设计目的:通过实例计算,可以让学生更好的理解数学来源于生活,又能解决实际的生活问题的作用,又可为最后的实践题打下很好的伏笔)

4.现在你能告诉大家不知疲倦的小秒针顶端,在一个小时的时间内所走过的路程了吗?要解决这个问题你想得到什么样的数据。

(设计目的:让学生自己寻找解决问题的条件,培养学生的独立思考能力。此题和前面的引入题互相呼应,做到解决问题有始有终)

可让学生从知识点,从测量方法——能力点,数学史知识——情感态度价值观等方面总结自己的收获。

小组合作完成,应用你的知识,想办法测量一下,从学校大门口到圆城楼门口的距离大约是多少米。

(设计目的:让学生真正能够达到学习上的学以致用,并且培养学生的小组合作意识和学生的动手能力)

数学六年级上册的教学设计篇六

(1)能够利用身边的工具测量出圆的周长

(2)能够掌握多种测量计算圆的周长的方法

(3)能够说出圆周率小数点7位

(4)能够了解祖冲之

(5)能够灵活运用圆的周长计算公式进行计算

(6)培养学生逻辑推理能力

(7)对学生进行爱国主义教育

(8)培养学生的观察、比较、概括和动手操作的能力

重点:圆的周长和圆周率的意义

难点:圆周长公式的推导过程

ppt课件、视频、篮球、硬币、瓶盖

一、讨论探索活动导入

1、展示实物篮球、瓶盖、硬币

揭示主题:圆的周长

2、提问:正方形、长方形的边长是4条边相加就是周长,那圆的周长也和它们一样吗?

3、引导学生利用身边的工具测量出篮球的周长(分小组讨论探索)

4、提问:圆是没有边长的,它只是一条曲线,你们能利用手中的工具将圆的周长测量出来吗?你们能想几种方法出来?

5、分享测量的方法

方法:化曲线为直线、滚动、软皮尺测、绳绕圆一周

二、了解圆周率

1、提问:观察一下篮球和硬币的直径和周长,你们得出什么结论?

结论:

圆的周长与它的直径有关,直径越大,周长越大

一个圆的周长总是它的直径的3倍多一点

2、提问:有谁知道圆周率是多少吗?

圆周率3.1415926535

3、大家猜一猜圆周率有多少小小数点?

(展示祖冲之图片以及圆周率的发展史)

中国古代数学家祖冲之比外国早1000年第一个把圆周率的值精确到7位小数

圆周率是任意一个圆的周长与它的直径的比值,这个直径是一个固定的数,用字母π表示,它是一个无限不循环小数,π=3.1415926535......取近似值π=3.14

3、播放视频:歌曲名3.1415

三、利用公式计算圆的周长

1、根据圆的周长和直径的关系可以推导出一个圆的周长计算公式,在书上,告诉我是什么?

公式:c=πd或c=2πr

2、提问:求圆的周长需要知道哪些条件?

条件:直径或者半径、π=3.14

3、例题讲解

书上第64页例题

4、做练习题

(展示ppt)

课后小结

圆的周长与它的直径有关,直径越大,周长越大

圆周率π是一个无限不循环小数,π=3.1415926535......取近似值π=3.14

圆的周长公式:c=πd或c=2πr

课后习题

同样的小组成员,测量一个学校圆形的周长,小组的形式合作完成

数学六年级上册的教学设计篇七

九年义务教育六年制小学数学[人教版]第十一册《圆的认识》

1、使学生认识圆,掌握圆的特征;了解圆的各部分名称。

2、会用字母表示圆心、半径、直径;理解并掌握在同圆(或等圆)中直径与半径的关系。

3、能正确熟练地掌握用圆规画圆的操作步骤。

4、培养学生动手操作、主动探究、自主发现、交流合作的能力。

1、导入新课

(1)学生活动(边玩边观察)。

①球、球相碰玩具表演。②线系小球旋转玩具表演。

[教师要求学生将观察到的形状告诉大家,学生异口同声回答:圆形。这里,教师采用学生感兴趣的玩具表演活动,既直观形象,又易于发现,进而抽象出“圆”。学生从“玩”入手,不知不觉进入学习状态。学习兴趣浓厚,乐于参与,利于学习。]

(2)师生对话(学生可相互讨论后回答)。

教师:日常生活中或周围的物体上哪里有圆?

学生:在钟面、圆桌、人民币硬币上……都有圆。

教师:请同学们用手摸一摸,体会一下有什么感觉?

学生用眼看一看、用手摸一摸,感觉:……闭封的、弯曲的。

教师(多媒体演示:圆形物体→圆):这(指圆)和我们以前学过的平面图形,有什么不同呢?

学生:以前我们学过的平面图形如长方形、正方形、三角形、平行四边形和梯形的共同特征,都是由线段围成的直线图形。而我们现在看到的(指圆)这种图形是由曲线围成的图形。

教师(鼓励表扬学生):对,这个图形就是圆,你能说说什么是圆吗?

学生讨论后回答:圆是平面上的一种曲线图形。(这时,教师请同学们把眼睛闭上,在脑子里想圆的形状,睁开眼睛再看一看,再闭上眼睛想一想,能否记住它。)

教师在此基础上揭示课题,并请学生回答:你还想认识圆的什么?学生说:还想认识圆的圆心、直径、半径……

[这里通过生生交流、师生互动,形象感知、抽象概括,帮助学生正确建立“圆”的概念。]

2、探索新知。

(1)探究——圆心

① 徒手画圆。

教师请两个学生一同在黑板上徒手画圆,然后请同学们评一评(3个人)谁画的圆好呢?……师生认为用工具画圆才能画得好。[师生共同表演、平等相待、大家评说、其乐融融。]

②用工具画圆。

教师请同学们用自己喜欢的工具画圆。学生画圆:a.用圆规画圆;b.用圆形物体画圆。[画圆方法任学生自选,既体现因人而宜、因材施教,又体现尊重学生(个性)、教学民主。]

③找圆心。

学生动手剪一剪、折一折,再议一议、找一找……自我探索发现圆的“圆心”。[教师放手让学生在动手操作中探索,在探索中发现新知,培养探究能力。]

教师引导学生归纳小结:圆中心的一点叫做圆心,圆心用字母“o”表示。(学生在圆形纸片上点出圆心,标出字母。)

④游戏趣味题。

在操场上,体育老师在地上画了一个大圆,给同学们做游戏。老师说,不管你站在什么位置,都会派上用场。你喜欢站在什么位置呢?请你点出来。

[教师请学生边点边说明这点与圆的位置关系,同时给予评说。如学生点到“圆心”,师评说:“你很有雄心,喜欢别人围着你转,将来必成大器。”如学生点到“圆内”,师评说:“你比较守规矩,喜欢在一定的范围内活动,将来不容易犯错误。”如学生点到“圆上”,师评说:“你做事很有规律,能够遵循原则,同时与‘上司’相处喜欢保持一定距离。”如学生点到“圆外”,师评说:“你很了不起,思维活跃,思路开阔,做事不愿受条条框框的束缚,喜欢创新,有开拓精神,将来定会大有作为。”……这样教学,生动有趣,其乐无穷,激励性强,学生乐学,学得轻松愉快、积极主动。学生对圆、圆心、圆内、圆上、圆外等基本概念能够有深刻的理解。]

(2)探究——圆的直径、半径及其关系。

教师:你还想知道什么?

学生:还想知道圆的直径、半径,直径与半径之间有什么关系?……

数学六年级上册的教学设计篇八

1. 使学生结合实例,理解比的意义,知道比的前项和后项,会正确地读、写两个数的比,会求比值。了解比和分数、除法之间的联系,会把比改写成分数的形式。

2. 在解决实际问题的过程中,了解比在日常生活中的广泛应用,体会数学与生活的联系,培养对数学学习的兴趣。

理解比的意义,比和分数、除法之间的联系。

电脑出示三幅长方形的画(标出每一幅的长和宽)。

谈话:这里有三幅不同形状的画,你们觉得哪幅画的形状看起来最舒服、最美观?(学生都认为第二幅比较美观)三幅画画的都是美丽的海滨,为什么同学们都认为第二幅比较美观呢?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)这三幅画长和宽的长度不同,所以给人的感觉就不一样,你知道可以怎样来表示每幅画长和宽的关系吗?(第一幅画长是宽的2倍,宽是长的1/2……)

提问:还可以怎样表示它们的关系?

过渡:是的,我们还可以用比来表示每一幅画长和宽的关系。今天这节课我们就来认识比。

1. 用比表示两个同类量的相除关系。

(1)讲解:像第一幅画长是宽的2倍,也可以表示为:长和宽的比是2比1,记作2 ∶ 1,“∶”是比号。宽是长的1/2也可以表示为:宽和长的比是1 ∶ 2。你能说一说怎样用比表示第二幅画、第三幅画长和宽的关系吗?

学生分别用比表示另外两幅画的长和宽的关系。

(2)出示一瓶××牌洗洁液,用实物投影放大洗洁液的使用说明。

谈话:在日常生活中,我们经常用比表示两个数量之间的关系。如:这瓶洗洁液,上面的使用说明就是用比来表示的。

指说明中1∶4的图,提问:这里浅色部分和深色部分分别表示什么?你知道1 ∶ 4是表示什么意思吗?(表示洗洁液和水的比是1 ∶ 4,就是1份洗洁液要加4份水的意思,洗洁液的体积是水的1/4)

再问:那么水和洗洁液的比是几比几?表示什么意思?

师生共同讨论1 ∶ 8和1 ∶ 1的含义。

2. 用比表示两个不同类量的相除关系。

谈话:通过刚才的学习,同学们对比有了初步的认识。下面我们再看一幅图(出示图:一堆梨,下面标有2千克,共3元;一堆苹果,下面标有3千克,共6元)。

提问:根据图中的信息,你知道梨的单价是多少元吗?

根据学生回答,板书:单价=总价÷数量。

讲解:像这样总价和数量之间的关系也可以用比来表示,梨的总价和数量的比是3 ∶ 2,表示总价除以数量。

提问:你能用比来表示苹果的总价和数量之间的关系吗?

这里的6 ∶ 3表示什么意思?(表示总价除以数量)

3. 理解比的意义。

谈话:根据上面的例子,你能说一说什么叫两个数的比吗?

小结:两个数相除又叫做两个数的比。

4. 自学课本。

提问:关于比,你还想了解哪些知识?下面请同学们带着这些问题自学课本第53页,再和小组里的同学互相说一说,你知道了什么?

反馈:通过自学,你又了解了哪些知识?

师生共同讨论下面的问题:

(1)比由哪几部分组成,分别叫什么?比的后项能为0吗?为什么?

(2)什么叫比值?怎样求比的比值?

(3)比和除法、分数有什么联系?

(4)比还可以写成怎样的形式?

小结:(略)

1. 完成“练一练”第1、2题。

学生完成填空后,让学生说一说每个比所表示的意思。

2. 完成“练一练”第3题。

学生改写后,再读一读,并分别指出每一个比的前项和后项。

3. 小强和爸爸身高的比。

出示:小强的身高是1米,他爸爸的身高是 173厘米。写出小强和他爸爸身高的比。

学生练习后,组织交流,并说一说为什么小强和他爸爸身高的比不能写成1 ∶ 173。

4. 糖水的甜度。

出示:两杯糖水,并标出糖和水质量的比,第一杯是1 ∶ 20,第二杯是1 ∶ 25。

提问:你知道哪杯水甜吗?为什么?

出示:第三杯中糖4克,水100克。

谈话:这杯糖水和刚才的哪一杯一样甜?先想一想,再和同桌说一说你是怎样比较的。

提问:根据第一杯糖和水质量的比是1 ∶ 20,你能说出第一杯中糖和糖水质量的比吗?

提问:今天我们共同学习了什么?你们有什么收获?还有什么问题吗?

出示课始的三幅画,谈话:还记得我们一开始出示的三幅画吗?为什么大家都认为第二幅比较美观呢?你能算出这幅画长和宽的比值吗?(学生算出长和宽的比值大约是0.618)其实呀,这里面还藏着许多奥秘呢,同学们想了解吗?

课件播放短片,介绍黄金比。

谈话:其实,在我们的身边就有很多的黄金比,如我们经常见到的长方形纸的长和宽的比,等等。同学们如果有兴趣,可以在课后再去研究。

数学六年级上册的教学设计篇九

义务教育课程标准实验教科书(人教版)数学六年级上册第67-68页,圆的面积。

知识与技能:让学生经历操作、观察、验证、讨论和归纳等数学活动过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能运用公式解决相关的简单实际问题。

过程与方法:

(1)让学生进一步体会“转化”的数学思想方法,培养运用已有知识解决新问题的能力,增强空间观念,渗透极限数学思想,发展数学思维。

(2)、通过小组合作交流,培养学生合作探究精神和创新意识,提高学生动手实践和数学交流能力,体验数学探究的乐趣。

情感与态度:培养学生能积极主动地参与各种探索和操作活动,进一步体会“转化”方法的价值;培养运用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

【教学重点】:推导圆的面积计算公式并能正确地应用圆面积的计算公式进行圆面积的计算。

【教学难点】:引导学生进一步体会“转化”的数学思想,利用已有知识并结合渗透“极限”的思想推导圆的面积计算公式。

多媒体课件,圆片等。

【教学方法】:自主探究法

一.以旧引新、导入新课

1、以前我们学过哪些平面图形的面积?

2、长方形的面积怎样计算?

3、回忆一下三角形的面积公式是怎样推导的?

4、小结:我们总是把新的图形经过剪、拼“转化”成已经学过的图形来推导面积公式的。(板书:转化)

5、圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导呢?这是我们这节课要学习的内容——(板书课题:圆的面积)

二、动手实践、探索新知

1、补充感知、理解意义

(1)(出示圆片):那位同学来指一指圆的面积是哪一部分?

(2)同学们再用手指一指自己带来的圆的面积。

(3)谁来说说什么叫做圆的面积?(板出:圆所占平面的大小叫圆的面积。)学生齐读。

2、比较猜测、探明方向

(1)提问:猜猜圆面积的大小与什么有关?

(2)下面我们来动手验证一下是否与半径有关:①你们想通过什么方法来推导圆的面积计算公式?②想把圆转化成什么图形?(先独立思考,再把你的想法与同桌互相说说。)

(3)活动要求:折一折手中的圆片能折出什么图形?

(4)把16等份圆和32等份圆分别剪开(在黑板上贴出这两个圆),拼成两个长方形,拼好后一起思考黑板上的两个问题:

①圆和(近似的)长方形有什么关系?(形状变,面积相等)

②课件演示:圆16等份和32等份后,拼成什么图形?(分的份数越多就越像长方形)

(教师配合课件演示作适当说明)我把一个圆平均分成16份,并剪成2个半圆,重新拼组成一个近似的长方形。

把一个圆平均分成32份,剪成2个半圆重新拼组成一个更接近长方形。

小结:它们的面积没有改变,圆的面积=拼成的近似长方形的面积。

3、圆的面积计算公式的推导。

小组合作讨论以下问题:

a、拼成的近似长方形的面积和圆的面积有什么关系?

b、长方形的长与圆的周长有什么关系?

c、长方形的宽与圆的半径有什么关系?

d、你能找出圆的面积计算方法吗?

长方形的面积=长×宽,

所以圆的面积=()×()=()

学生在小组内积极讨论,探究、分析,并将结果汇报。

长方形的长是圆周长的一半,长方形的宽是半径(r)

因为长方形的面积=长×宽

所以圆的面积=∏r×r=r2

齐读公式s=∏r2强调r2=r×r(表示2个r相乘)

同学们太捧了,学会了把圆转化成长方形,并推导出圆的面积计算公式.

三、巩固运用、形成技能

1、我们用了多种方法推导、验证了圆的面积公式,并知道了圆的面积大小与半径有关,你们能用刚才学到的知识解决生活中的实际问题吗?

2、求圆的面积需要什么条件?是不是只有知道半径才能求圆的面积?

(1)课件出示例1

(2)学生独立审题

(3)教师板演解答过程.

3、求下面圆的面积r=3md=5cm

①学生独立完成

②集体核对时,强调要先算平方再算乘法。

4、判断题(课件出示)

5、拓展练习:机动题

小力量得一棵树干的周长是125.6厘米。这棵树干的横截面积约是多少??

四、课堂总结、深化认知:这节课,你有哪些收获?

五、作业:练习十六2.4题.

附:板书

圆的面积

长方形面积=长×宽

↓↓↓

圆的面积=圆周长的一半×半径

=∏r×r

=∏r2

例1:r:20÷2=10(m)

s:3.14×102=314(m2)

答:它的面积是314m2。

数学六年级上册的教学设计篇十

人民教育出版社六年级数学上册第56-57页 例1 例2

(1)认识圆,知道圆的各部分名称。

(2)掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。

(3)初步学会用圆规画圆。

(4)通过探究活动,发展学生的空间观念和初步探索的能力。

重点:掌握圆的特征,会使用圆规画圆。

难点:会使用圆规画圆。

一激趣定标

(一)复习导入

在数学王国里,住着许许多多的平面图形。现在请同学们回忆一下,我们都认识了哪些平面图形?(投影出示长方形,正方形,三角形,平行四边形,梯形)今天,老师就再次带领大家走入我们的平面图形世界,并认识一个新的朋友-圆。

(二)板书课题

圆的认识

(三)出示学习目标

1.认识圆,知道圆的各部分名称。

2.掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。

3.初步学会用圆规画圆。

二、自学互动(适时点拨)

活动(一)

1.找圆

在我们的生活中,那些物体是圆形的?

2.感受圆的曲线特性

(课件出示圆,正方形,长方形,三角形,平行四边形,梯形)

观察,比较圆和其他平面图形的异同点。

3.用物体画圆

利用含圆的小物体在之上画圆,并用剪刀剪下来。

活动(二)

1.认识圆的特征

(1)认识圆各部分的名称

a.认识圆心

a.( 将剪好的圆,对折,打开,再换个方向对折,再打开)

让学生说一说自己的发现。

b.小结圆心的概念

b.认识直径

a.( 用彩色笔将其中一条折痕描出来)

让学生观察所描出来的线段,说一说自己的发现。

b.小结直径的概念

c.认识半径

(在圆上任取一点,并与圆心连接)

教师介绍半径,并让学生在圆纸片上画出一条半径。

(2)认识同一圆内半径和直径的关系

小组讨论:在同一圆内,有多少条半径?多少条直径?直径和半径的长度有什么关系?

a.学生动手操作,讨论交流,教师巡视指导。

b.反馈交流结果,并归纳总结。

活动(三)

1.用圆规画圆

(1)师介绍圆规并示范画圆。

(2)学生尝试画圆。

(3)交流画圆的方法和经验。

(4)思考:圆的位置由什么确定?圆的大小由什么决定?

2.适时点拨

(1)圆心的概念:将圆反复对折,所有折痕相交于圆中心的一 点,这一点叫做圆心。

一般用字母o表示。

(2)半径的概念:连接圆心和圆上任意一点的线段。

(3)直径的概念:通过圆心并且两端都在圆上的线段。

(4)半径,直径的特征及关系:一个圆内,有无数条半径,所有半径都相等.

有无数条直径,所有直径都相等。

直径是半径的2倍,半径是直径的一半。

用字母表示为:d=2r或r=d÷2(同一个圆内)

(5)用圆规画圆的方法:把圆规两脚分开,定好两脚间的距离(即半径),

把有针脚的一脚固定在圆心上,把装有铅笔芯的一

脚旋转一周,就能画出一个圆。

(定点,定长,旋转一周)

四、测评训练

1.填一填。

(1)圆中心的一点叫做(),用字母( )表示,

它到圆上任意一点的距离都( )。

(2)()叫做半径,用字母()表示。

(3)()叫做直径,用字母()表示。

(4)在一个圆里,有()条半径、有( )条直径。

(5)()确定圆的位置,( )确定圆的大小。

2.画一画.。

分别用圆规画出半径为2厘米,4厘米的圆。

五、课堂小结

今天我们学习了哪些内容?把你的收获和同学说一说,好吗?

数学六年级上册的教学设计篇十一

使学生在具体情境中初步理解东偏北(南)、西偏南(北)等方向的含义,会用方向和距离描述物体的位置,初步感受用方向和距离确定物体位置的科学性和合理性。进一步培养学生观察能力、识图能力和有条理地进行表达的能力,发展空间观念。

重点:通过解决实际问题,使学生体会确定位置在生活中的应用,了解确定位置的方法;在情境中学生能根据方向和距离确定物体的位置,并描述简单的路线图。

难点:通过解决实际问题,使学生能根据方向和距离确定物体的位置,并能描述简单的路线图。

同学们,你们看过《龟兔赛跑》的故事吗?生说看过。谁知道比赛的结果是谁赢了?一起说乌龟。为什么是乌龟赢了?生说:因为兔子睡了一觉。兔子知道自己错了。今天又要跟乌龟再比赛赛跑:

请看《龟兔赛跑续集》

观看龟兔赛跑图片,导入课题。

小兔为什么又会输?生笑着说这是因为小兔跑错方向了。怎样才能走到终点呢?由哪几个要素决定?今天我们就来研究有关于:终点在起点什么方向上?终点和起点相距多远?

带着这两个问题,

我们来学习今天的新课:位置

同学们,我们已经学习了哪些方位?生:东,南,西,北四个方位。还有呢?生:东南,西南,东北,西北。我们已经学习了8个方位。课件出示。

每年我国的沿海地区都会受到台风的侵扰。瞧,这是某年的一个强台风位置图,请测算一下。

(一)教学例1

1.现在台风中心的位置。(课件出示)

目前台风中心位于a市东偏南30°方向、距a市600km的洋面上,正以20千米/时的速度沿直线向a市移动。

台风大约多少个小时后到达a市?

2.东偏南30°是什么意思?如果只有这个条件,能否确定台风中心的具体位置吗?

3.如果这样预告会发生什么情况?这样确定方向准确吗?怎样预告会更加的准确?

4.还要预告什么?(距离)

(距离600千米)如果没有距离又会怎样?

5.小结:预告台风时既要说方向又要说距离。强调:东偏南30°还可以怎样表示?也可以说成南偏东60°,但在生活中一般我们先说与物体所在方向离得较近(夹角较小)的方位。 6.口答:台风大约多少个小时后到达a市?

7.练习:完成教科书第20页的做一做。

先让学生独立完成,让学生操作中经历知识的形成过程,然后集体订正。

(二)教学例2

1.课件出示:台风到达a市后,改变方向向b市移动。受台风影响,c市也将有大到暴雨。 b市位于a市北偏西30°方向、距离a市200km。c市在a市正北方,距离a市300km 。请你在例1的图标中标出b市、c市的位置。

2.怎样表示距离呢?

先确定平面图上的方向,再确定各建筑物的距离。如果学生没有说到,老师可以进行引导:你们打算怎样在图上表示出200km?从而帮助学生确定比例尺,和图上距离。用1cm表示100km比较合适。

3.学生独立完成,集体订正。

4.订正后交流:你们组认为在确定这点在图上的位置时,应注意什么?怎样确定?

通过刚才的学习,你觉得怎样确定物体的位置?

教师小结:绘制平面图时,一般先确定角度,再确定图上的距离。

根据方向和距离可以确定物体所在的位置。

5.口答:台风到达a市后,移动速度变为40km/时,几小时后到达b市?

6.练习:完成教科书第21页的做一做,打开课本第21页的做一做:

(1)有关信息:

教学楼在校门的正北方向150米处。

图书馆在校门的北偏东35度方向150米处。体育馆在校门西偏北40度方向200米处。

(2)师:要在平面图上准确地标出一个地方的位置,你认为需要考虑哪几个方面? (3)师生共同梳理:a.先确定好平面图的中心。 b.确定方向和距离。

(4)自主操作,独立绘制平面图。

(5)指名展示交流,完善绘图过程。

学生展示绘制的图,并演示过程,其他学生评议补充。

看来画图的过程有点复杂,让我们一起再来回顾一下整个过程。画图的过程和方法清楚了吗?刚才你们是不是这样画的?

看来同学们对本届的知识掌握的还不错。现在你们有勇气来挑战自我吗?

课件出示:

1、警察局收到卧底送来的示意图

(1)犯罪分子1在警察局的( )方向,距离是( )米。

(2)犯罪分子2在警察局的( )向,距离是

( )米。

(3)犯罪分子3在警察局的( )方向,距离是

( )米。

2、做一做,课件出示,独立完成后订正。

这节课你的最大收获是什么?你还有什么不懂的地方?

位置与方向,生活常遇到,

要想定位置,两点要记牢:

方向是首要,距离少不了。

同学们的收获可真不少,你们能用今天所学的知识创作一幅学校建筑平面图吗?自己开始试一试吧!

数学六年级上册的教学设计篇十二

1.使学生学会圆环面积的计算方法,以及圆形与矩形混合图形的相关计算方法。

2.学会利用已有的知识,运用数学思想方法,推导出圆环面积计算公式,有关于圆形与正方形应用的解答方法。

3.培养学生观察、分析、推理和概括的能力,发展学生的空间概念。

1教学重点

会利用圆和其他已学的相关知识解决实际问题。

2教学难点

圆与其他图形计算公式的混合使用。

ppt卡片

1复习巩固上节知识,导入新课

2新知探究

2.1圆环面积

一、问题引入

同学们知道光盘可以用来做什么吗?谁能来描述一下光盘的外观。

回答(略)。

今天我们就来做一做与光盘相关的数学问题。

二、圆环面积求解

例2.光盘的银色部分是一个圆环,内圆半径是50px,外圆半径是150px。圆环的面积是多少?

步骤:

师:求圆环面积需要先求什么?

生:内圆和外圆的面积

师:同学们可以自己做一做,分组交流一下自己的解法。

师:给出计算过程与结果:

三、知识应用

做一做第2题:

一个圆形环岛的直径是50m,中间是一个直径为10m的圆形花坛,其他地方是草坪。草坪的占地面积是多少?

师:这是一道典型的圆环面积应用题。通过直径得到半径,代入圆环面积公式,很简单。

2.2圆与正方形

一、问题引入

师:同学们知道苏州的园林吧。大家有没有观察过园林建筑的窗户?它有很多很漂亮的设计,也有很多很常见的图形,比如五边形、六边形、八边形等等。其中外圆内方或者外方内圆是一种很常见的设计。

师:不仅是在园林中,事实上在中国的建筑和其他的设计中都经常能见到“外圆内方”和“外方内圆”,比如这座沈阳的方圆大厦、商标等等。下面我们来认识一下这种圆形与正方形结合起来构成的图形。

二、知识点

例3:图中的两个圆半径是1m,你能求出正方形和圆之间部分的面积吗?

步骤:

师:题目中都告诉了我们什么?

生:左图圆的半径=正方形的边长的一半=1m;右图圆的面积=正方形对角线的一半=1m

师:分别要求的是什么?

生:一个求正方形比圆多的面积,一个求圆比正方形多的面积。

师:应该怎么计算呢?

归纳总结

如果两个圆的半径都是r,结果又是怎样的呢?

当r=1时,与前面的结果完全一致。

四、知识应用

70页做一做:

下图是一面我国唐代外圆内方的铜镜。铜镜的直径是600px。外面的圆与内部的正方形之间的面积是多少?

师:同学们用我们刚刚学过的知识来解答一下这道题目吧。

解:铜镜的半径是300px

5.3随堂练习

若还有足够时间,课堂练习练习十五第5/6/7题。

(可以邀请同学板书解题过程)

6 小结

1.今天我们共同研究了什么?

今天我们在已知圆和正方形的面积公式的前提下,探索了圆环和“外圆内方”“外方内圆”图形的面积计算方法。这不是要求同学们记住这些推导出来的公式,而是希望同学们能过明白推导的方法,以后遇到类似的问题可以自己运用学过的知识来解决问题。

2.在日常生活中经常需要去求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化的吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子、车轮为什么要做成圆形的?大家需要多看多想!

7板书

例2解答步骤

数学六年级上册的教学设计篇十三

教学目的

1、通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;

2、能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

教学重点:圆面积计算

教学难点:公式以及推导。

教学过程

一、复习并引入课题。

1、口算:2π 9。42÷π 12。56÷π

2、已知圆的半径是2。5分米,它的周长是多少?

3、一个长方形的长是6。2米,宽是4米,它的面积是多少?

4、说出平行四边形的面积公式是怎样推导出来的?

5、出示场景图:这个圆形草坪的`占地面积是多少平方米,你们会计算吗?

课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。

二、新课讲授

1、圆的面积的含义。

问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

2、圆的面积公式的推导。

问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)

问题:我们用面积单位直接去度量显然是行不通的。那么我们怎么办呢?我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形。怎样分割呢?(教师出示场景图)问题:这三位同学是怎样分割的?你知道他们的做法吗?(学生回答,老师给予肯定。)

教师拿出圆的面积教具进行演示:

先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

强调:如果分的等份越多所拼的图形就越接近长方形。

问题:拼成的长方形的长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)

引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?

学生独立完成圆面积公式的推导:

总结:我们用s表示圆的面积,那么圆面积的大小就是:再次强调:

(1)拼成的图形近似于什么图形?

(2)原来圆的面积与这个长方形的面积是否相等?

(3)长方形的长相当于圆的哪部分的长?

(4)长方形的宽是圆的哪部分?

(5)用s表示圆的面积,那么圆的面积可以写成:s=πr2

3、圆面积公式的应用。

师:我们回头看刚才的问题,圆形花坛的直径是20m,这个花坛占地多少平方米?

学生读题,问:这里要求圆形花坛的面积,条件是否具备?我们该怎样列式呢?

(学生独立完成,教师巡视,对有困难的学生给予辅导。)教师板演计算过程。

出示例2:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是cm,它的面积是多少?

问题:你能利用内圆好外圆的面积求出环形的面积吗?

学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表

回答问题,在黑板上演示计算方法,集体纠错。)

三、巩固练习。

1、根据下面所给的条件,求圆的面积。

半径2分米。

直径10厘米。

(1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

(2)强调书写格式,运算顺序与单位名称。

总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式s=πr2计算。

四、课堂小结

总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以化地吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!

另外,我们在前面也学习了如何求圆的周长,需要注意的是:

(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。前者是二维的概念,而后者是一维的概念。

(2)求圆面积的公式是s=πr2,求圆周长的公式是c=πd或c=2πr;

(3)计算圆的面积用面积单位,计算圆的周长用长度单位。板书

圆的面积

长方形的面积=长×宽

圆的面积=周长的一半×半径

s=πr×r

s=πr

175414
领取福利

微信扫码领取福利

微信扫码分享